Математик решил загадку числа 42

В течение 65 лет математики по всему миру пытались решить своеобразную головоломку и найти три числа, сумма кубов которых составила бы 42. И, кажется, им наконец удалось.
Задача звучит следующим образом: может ли любое число от 1 до 100 быть выражено как сумма трех кубов?

Если записать формулу 1954 года, то получится следующее: х^3 + y^3 + z^3 = K.

K в данном случае — любое число от 1 до 100. Соответственно, нужно было определить все три неизвестные переменные для каждого числа K в этом промежутке.

В последующие десятилетия были найдены решения для простых чисел. В 2000 году математик Ноам Элкис из Гарвардского университета опубликовал алгоритм, который помог найти более сложные. К 2019 году нерешенными остались только два самых сложных числа: 33 и 42.

Как и многие современные открытия, разгадке поспособствовал Youtube. Математик Эндрю Букер с канала Numberphile опубликовал решение задачи для числа 33, написав собственный алгоритм. Для этого ему понадобился мощный суперкомпьютер в Университете Advanced Computing Research Center, а решение удалось получить всего за три недели.

Итак, у нас осталось самое сложное число: 42. Для его решения Букер заручился поддержкой математика MIT Эндрю Сазерленда, эксперта в области массовых параллельных вычислений. В свою очередь, они прибегли к помощи Charity Engine — инициативы, которая охватывает весь земной шар, используя остаточную вычислительную мощность более 500 000 домашних ПК, в результате получая своего рода «планетарный суперкомпьютер».


Суммарно вычисления заняли свыше миллиона часов, но ответ все-таки был найден:

X = -80538738812075974

Y = 80435758145817515

Z = 12602123297335631

Таким образом, полное уравнение выглядит следующим образом:

(-80538738812075974)^3 + 80435758145817515^3 + 12602123297335631^3 = 42.

https://www-popmech-ru.cdn.ampproject.org/c/s/www.popmech.ru...