sfw
nsfw

Результаты поиска по запросу "космос планета наука"

В решении задачи трех тел обнаружили «островки закономерности»

Когда в космическом пространстве три массивных тела воздействуют друг на друга через силы взаимного гравитационного притяжения, их движение становится непредсказуемым. Многие ученые пытались описать движение трех тел в одной системе и таким образом найти решение задачи, применимое для любых начальных условий объектов. Однако все было безуспешно. Теперь международная команда математиков и физиков провела тысячи моделирований задачи трех тел и выяснила, что среди множества ее решений есть и те, которые заключают в себе «островки закономерности», где объекты начинают вести себя предсказуемо.
Международная команда математиков и физиков под руководством Алессандро Трани (Alessandro Trani) из Института Нильса Бора (Дания) использовала суперкомпьютер для численного моделирования задачи трех тел и обнаружила в хаосе движения этих объектов пробелы — «островки закономерности». Эти «островки» показали, где объекты ведут себя предсказуемо и подчиняются определенным правилам: траектория их орбит напрямую зависит от того, как три объекта расположены друг относительно друга в момент сближения, а также от их скорости и угла сближения. Об исследовании рассказывается в пресс-релизе, опубликованном на сайте института.
Трани и его коллеги создали программу Tsunami, которая перебирала миллионы возможных комбинаций взаимодействия трех тел в системе, рассчитывала траекторию их движения, используя теорию общей относительности Эйнштейна и законы Ньютона. Эта программа предполагала использование статистического метода и наличие специальной карты, на которой каждая точка соответствовала конкретному набору начальных условий.
Затем каждой точке ученые присвоили свой цвет в зависимости от того, какой из трех объектов в итоге «выбрасывается» из системы в результате взаимодействия (в большинстве случаев — объект с наименьшей массой).
Если бы движения объектов в системе были случайными, то есть сама задача предполагала хаотичность, цвета на карте перемешались бы случайным образом. Однако в своем исследовании такой картины ученые не наблюдали. Они обнаружили на карте области, окрашенные в один цвет. По словам исследователей, эти области и есть «островки закономерности»: там начальные условия предопределяют дальнейшую эволюцию системы.
"Миллионы симуляций формируют грубую карту всех мыслимых результатов, когда встречаются три объекта, как огромный гобелен, сотканный из нитей начальных конфигураций. Именно здесь появляются острова закономерности"
Авторы работы посчитали, что на этих «островках» движение объектов подчиняется строгим математическим закономерностям, оно упорядоченно и предсказуемо. Это, в свою очередь, указывает на существование общего решения задачи трех тел.
Однако «островки закономерности», обнаруженные командой Трани в решении задачи трех тел, могут представлять проблему для исследователей. Дело в том, что этот подход хорошо вычисляет хаотичные траектории движения тел, но плохо работает, когда дело касается «закономерных» траекторий.
«Когда некоторые области на карте, предполагающие хаотичное движение объектов, внезапно переходили в фазу закономерного движения, наши статистические расчеты для этой фазы нарушались, что приводило к неточным предсказаниям. Теперь наша цель — научиться сочетать статистические методы с численными, чтобы обеспечить высокую точность предсказания, когда система начинает становится более закономерной», — пояснил Трани.
Открытые «островки закономерности» — важный шаг на пути к общему решению задачи трех тел. Исследователям еще предстоит провести серию компьютерных экспериментов, чтобы детально изучить свойства «островков» и понять механику их образования, а также оценить влияние на эволюцию системы.
В космосе наличие систем, состоящих из трех объектов, не редкость. Поэтому решение задачи трех тел — не просто теоретический вызов, а возможность постичь тайны Вселенной.
Статья спизжена отсюда

Отличный комментарий!

Кароч, инопланетяне из книги не шарят в физике

Наша Галактика оказалась экстраординарно бедной

Космический телескоп «Гайя» позволил оценить скорость движения рекордного количества звезд в Млечном Пути, и новые данные оказались крайне неожиданными. Дело не только в том, что его масса упала во много раз: стало ясно, что сама структура Галактики не такая, как думали раньше.
Космический телескоп «Гайя» на фоне диска нашей Галактики
Примерно полвека назад астрономы обнаружили, что внешние части галактических дисков вне Млечного Пути вращаются значительно быстрее, чем должны бы. Скажем, в Солнечной системе планеты, близкие к Солнцу, вращаются быстро, а более далекие — медленно, и это кажется логичным следствием ослабевания действующего на них притяжения светила. А вот в иных галактиках внешние области вращаются без убывания скоростей вращения — как будто их раскручивает какая-то огромная, но невидимая масса (темная материя).
Это наблюдение совершило революцию в космологии и в итоге в физике. Но оценить, как обстоят дела со скоростями вращения в других галактиках, оказалось намного проще, чем сделать это «у себя дома».
Наблюдать за крупным объектом, находясь внутри него, сложно: например, с нашего места в Галактике видеть другие ее части мешают не только пыль и газ, но и центральная ее часть (что находится за ней — прямыми наблюдениями проверить очень сложно). Революцию в вопросе произвел лишь космический телескоп «Гайя», запущенный 10 лет назад и работающий в точке Лагранжа L2, в полутора миллионов километров от Земли. Он может наблюдать более миллиарда звезд — рекордный показатель в истории астрономии. Однако обработка такого объема данных занимает массу времени и очень сложна.
Поэтому только сейчас в журнале Astronomy and Astrophysics вышла статья, суммирующая данные «Гайи» о скоростях вращения звезд в диске Млечного Пути. Она во многом опирается на результаты наблюдений и работы, вышедшие по этой теме ранее. Авторы новой статьи составили кривые, показывающие скорости вращения звезд в различных частях нашей галактики. Поскольку эти скорости определяются действующей на эти звезды гравитацией, именно по ним можно узнать реальную массу Млечного Пути, которая до этого оставалась объектом ожесточенных дискуссий.
Работа принесла два больших сюрприза. Во-первых, оказалось, что Млечный Путь не показывает ускоренного вращения краев галактического диска, как почти все сколько-нибудь хорошо изученные спиральные галактики, кроме нашей. На расстоянии от 63 до 86 тысяч световых лет от центра Млечного Пути скорость вращения его звезд вокруг галактического центра падает в среднем на 30 километров в секунду. Это не так мало: например, Солнце вращается вокруг ядра Галактики со скоростью 230 километров в секунду. Фактически убывание скоростей вращения звезд в нашей Галактике выглядит как «кеплеровское замедление», сходное с тем, что видно для внешних планет Солнечной системы. И не наблюдаемое пока в других галактиках Вселенной, похожих на нашу.
Это не значит, что темной материи у нас нет: по расчетам авторов новой работы, ее здесь втрое больше, чем обычной. Проблема в том, что для других спиральных галактик это соотношение — шесть к одному, то есть вдвое больше.
Кривая изменения средней скорости звезд в диске Млечного Пути по мере удаления от его центра. Вначале скорость резко возрастает, однако после 15 тысяч парсек начинает снижаться. Такой картины нет в других спиральных галактиках сходной светимости
Второй большой сюрприз: масса Млечного Пути оказалась равна примерно 200 миллиардам масс Солнца. Это примерно в пять раз меньше прошлых общепринятых оценок (триллион солнечных масс) и заметно меньше, чем у других спиральных галактик тех же размеров, что наша, наблюдаемых астрономами. Из этого следует, что оценки масс галактик — спутников Млечного Пути (например, Большого Магелланова облака) нужно пересматривать «вниз», причем довольно сильно.
Авторы исследования отметили, что, согласно их результатам, Млечный Путь оказывается экстраординарно редкой и экстраординарной бедной материей Галактикой. Причины этого пока не ясны.
Среди возможных объяснений ученые приводят то, что после 8-10 миллиардов лет назад наша Галактика практически не испытывала крупных слияний и поглощений (то есть не присоединяла к себе другие галактики). В то же время большинство других наблюдаемых спиральных галактик испытывали крупные слияния не позднее шести миллиардов лет назад. Возможно, что и малое число поздних слияний и малое количестве темной материи у нас как-то связано с тем, что строение рукавов в нашей галактике несколько отличается от большинства наблюдаемых спиральных.
Другое объяснение: «Гайя» использует иные методы для учета скоростей движения галактик. Если с ней что-то не так, то новые результаты по массе и скоростям в Млечном Пути тоже некорректны. В каком-то смысле такой вариант не менее потрясающий, чем первый, поскольку на точности цифр «Гайя» основывается немало выводов астрономов за последние годы.
Отдельно отметим, что если цифры «Гайи» все же корректны, то гипотеза модифицированной ньютоновской динамики (МОНД) неверна. Модифицированная ньютоновская динамика — это теория, предполагающая, что гравитация имеет разную силу для разных расстояний. То есть это объяснение, полностью альтернативное современной физической картине мира, основанной на теории относительности, несовместимой с таким подходом.
МОНД долгие годы пользовалась определенной популярностью, поскольку позволяет и объяснить слишком быстрое вращение дисков других галактик, и не искать темную материю, которая объясняла бы такое вращение. Но, если в нашей Галактике никакого быстрого вращения периферических частей галактического диска нет, а есть кеплеровское замедление его звезд, то МОНД, очевидно, неверна: гравитация не может ослабевать с расстоянием везде, кроме Млечного Пути.
Зато другие подходы — конкретнее, темная материя — с новой работой получили серьезное подтверждение. Количество темной материи в разных галактиках может различаться в рамках самых разных гипотез о ее природе. Теперь осталось лишь выяснить, какая именно из них верна: та, что опирается на данные гравитационного телескопа LIGO, или какие-то иные.
Статья спизжена отсюда

Отличный комментарий!

Да и заебок. Тебе зачем это всё? прикинь тут бы был ежедневный метеоритный дождь, межпланетные ветра с гелий-водородным туманом раз в сезон и взырвы сверхновых как фейерверк на китайский новый год.
Сидим себе потихонечку и норм. Не надо этой бурной космодискотеки.

Астрономы нашли мертвую звезду, которая медленно превращается в кристалл

С новым днём, пидоры!
Всего в сотне световых лет от нас астрономы заметили белого карлика, температура которого не соответствует его реальному возрасту. Это указывает на то, что мертвая звезда подогревается кристаллизацией своих недр, медленно превращаясь в черного карлика — объект, который до сих пор известен только в теории.
Кристаллизация недр белого карлика: взгляд художника / ©Mark Garlick, University of Warwick
Солнце и другие не слишком крупные звезды заканчивают жизнь, превращаясь в белых карликов. Они постепенно остывают, но так медленно, что этот процесс может занять триллионы лет, пока бывшая звезда не охладеет до состояния черного карлика. Сама Вселенная слишком молода для этого, и возможно, что в ней до сих пор не появилось ни одного такого объекта. Однако недавно австралийские астрономы заметили белый карлик в процессе перехода, подогреваемый кристаллизацией остывающего вещества. Их статья принята к публикации в журнале Monthly Notices of the Royal Astronomical Society.
Когда ресурсы для термоядерного синтеза заканчиваются, звезда умирает. Ее дальнейшая судьба зависит от массы; звезды средних размеров становятся белыми карликами. Они сбрасывают внешние оболочки, а ядро, которое больше не поддерживает внутреннее давление термоядерных реакций, коллапсирует. Возникший компактный и сверхплотный объект насыщен сравнительно тяжелыми элементами, такими как углерод, которые образовались во время прошлой жизни звезды.
По звездным меркам, белые карлики тусклы, но продолжают излучать, постепенно рассеивая, тепло, пока не превратятся в черных карликов. Ни один такой объект пока не известен: теория предсказывает, что процесс занимает невероятное время, возможно, до сотен миллиардов и триллионов лет. Однако признаки такого перехода обнаружили недавно Александр Веннер (Alexander Venner) и его коллеги из Университета Южного Квинсленда, причем сравнительно недалеко от Земли.
Остывание белого карлика должно сопровождаться кристаллизацией его вещества. Атомы углерода и кислорода перестают свободно течь и выкладываются в упорядоченную решетку, в состояние с меньшей энергией. Этот процесс идет с выделением тепла, дополнительно замедляя охлаждение белого карлика. В результате его температура не должна соответствовать реальному возрасту. Несколько лет назад массовый обзор белых карликов подтвердил, что многие из них намного горячее, чем должны быть.
Подобную картину наблюдали астрономы и в системе HD 190412, находящейся от нас на расстоянии чуть больше сотни световых лет. Было известно, что она включает три «обычные» звезды главной последовательности, но новые наблюдения показали, что тут же вращается и белый карлик, гравитационно связанный с ними. Возраст самой системы ученые оценивают в 7,3 миллиарда лет, а температура карлика соответствует возрасту 4,2 миллиарда лет.
Эти оценки довольно приблизительны, однако какой бы ни была разница, она указывает на протекающие в недрах карлика процессы кристаллизации вещества. Более того, тот факт, что он обнаружен так близко от Солнца, может показывать, что подобные объекты должны быть довольно многочисленны. Возможно, вскоре будут найдены и новые белые карлики, понемногу переходящие в черные.
Статья спизжена отсюда

Отличный комментарий!

Летишь такой по космосу никого не трогаешь КАКВДРУГ!!!
-Добрый уечер... спакойной ночи, спасибо пажалуста.
,астрономия,наука,белый карлик,космос,смерть звезды
,астрономия,наука,белый карлик,космос,смерть звезды

Эта кажущаяся в космосе пустота — туманность Barnard 68 из газа и пыли, настолько плотная, что она блокирует свет звезд позади нее

Отличный комментарий!

Физик увеличил возраст Вселенной вдвое

С новым днём, пидоры!
Согласно новому исследованию канадского физика, возраст Вселенной может достигать 26,7 миллиарда лет. Эта гипотеза бросает вызов доминирующей космологической модели и весьма сложно доказуема, но при этом может ответить на некоторые проблемные вопросы ранней Вселенной.
Эволюция Вселенной, начиная с Большого Взрыва слева, за которым следует появление Космического Микроволнового Фона. Формирование первых звезд завершает космические темные века, за которыми следует образование галактик
В течение многих лет астрофизики рассчитывали возраст нашей Вселенной, измеряя время, прошедшее с момента Большого взрыва, и изучая самые старые звезды на основе красного смещения света, исходящего от далеких галактик. Делали это так: все сверхновые типа Ia (надежно опознаваемые по спектру) имеют близкую энергию вспышки, однако их наблюдаемая яркость разная, поскольку они находятся на разном расстоянии от Земли. Сравнивая яркость этих «стандартных свечей космологии», можно понять, насколько удалены от нас те галактики, в которые входят эти сверхновые.
Затем астрономы обнаружили, что объекты, которые таким методом определены как далекие, выглядят очень красными в сравнении со сходными объектами, определенными как близкие (космологическое красное смещение). Чтобы объяснить эту странность, сначала предложили модель «утомленного света» — что фотоны с расстоянием теряют энергию, отчего становятся более «красными» (то есть более длинноволновыми). Это объяснение не работало по целому ряду причин, включая, например, ту, что вспышки сверхновых в далеких областях Вселенной длятся, на взгляд астрономов, дольше, чем в близких.
Поэтому вместо гипотезы «утомленного света» увеличение красного смещения с расстоянием объяснили общей теорией относительности. Согласно ей красное смещение — нормальный исход для фотона, летящего через пространство-время, которое расширяется. Это объясняло и то, почему вспышки сверхновых в ранней Вселенной шли дольше, чем в ближней: из-за растягивания фотонов от далеких сверхновых астрономы наблюдали кажущееся замедление времени для событий в ранней Вселенной. По расчетам в рамках этого подхода, наблюдаемое красное смещение от далеких галактик дает четко определенную скорость их удаления друг от друга за счет расширения Вселенной — примерно 70 километров в секунду на мегапарсек. Если поделить расстояние между далекими галактиками и нами на эту величину, получается 13,8 миллиарда лет — выходит, Большой взрыв, породивший нынешнюю Вселенную, случился именно тогда.

Сложности с возрастом

Однако в последний десяток лет начали накапливаться слабо совместимые с классической моделью развития Вселенной данные. Существуют некоторые очень древние звезды, такие как Мафусаил (HD 140283) и другие, которые должны были сформироваться 13,5 миллиарда лет назад. Между тем до сих пор считалось, что между Большим взрывом и образованием первых звезд должны были пройти многие сотни миллионов лет. Также ученые обнаружили некоторые галактики из ранней Вселенной, находящиеся на продвинутой стадии космической эволюции: хотя они видны нам такими, какими были лишь через несколько сотен миллионов лет после Большого взрыва, они содержат относительно богатые тяжелыми элементами звезды, для формирования которых требуется большое время звездной эволюции.
Чтобы разрешить это противоречие, профессор Раджендра Гупта (Rajendra Gupta) из Оттавского университета (Канада) предложил объединить гипотезу «усталого света» с объяснением красного смещения через расширение Вселенной в рамках теории относительности. Работу на эту тему ученый опубликовал в журнале Monthly Notices of the Royal Astronomical Society.
По мнению астрофизика, в сочетании с моделью усталого света обретают смысл и гипотезы о том, что фундаментальные физические константы, управляющие взаимодействием между частицами, могут меняться со временем. Включая те константы, на основании которых вычисляются космологическое красное смещение и возраст Вселенной.
Если константы действительно меняются таким образом, то временные рамки формирования ранних галактик, наблюдаемых на больших красных смещениях, могут быть увеличены с нескольких сотен миллионов лет до нескольких миллиардов лет. Это дает больше времени на развитие галактик и появление старых звезд в ранней Вселенной. В итоге Гупта предположил, что вероятный возраст Вселенной — 26,7 миллиарда лет, то есть примерно вдвое больше современных оценок.

Новые ответы, новые вопросы

В своем подходе Гупта пытается убрать противоречия между наблюдаемым в рамках теории относительности небольшим возрастом Вселенной (13,8 миллиарда лет) и очень зрелыми галактиками, которые астрономы открыли в последний десяток лет. Скажем, галактике HD1 — 13,463 миллиарда лет, она образовалась лишь через 324 миллиона лет после Большого взрыва. При этом она еще очень яркая, на уровне многих современных галактик. Современная мейнстримная космология не может объяснить, как за такое короткое время могло появиться достаточное количество звезд, нужное для образования яркой галактики. Неудивительно, что на этом фоне Гупта обратился к гипотезе конца 1920-х об утомленном свете.
Однако его работа, во-первых, объяснила далеко не все слабые места «утомленного света». Например, если бы фотоны «утомлялись» с расстоянием, то спектр реликтового излучения (от момента Большого взрыва) выглядел бы совсем не так, как сейчас. Теоретически, произвольно меняя физические константы (исходя из предположения Гупты, что они меняются со временем), можно попробовать объяснить и это, но тут наступает «во-вторых».
Второй слабостью подхода Гупты следует назвать то, что его крайне сложно проверить, если это вообще возможно. Если мы будем исходить из того, что физические константы в ранней Вселенной менялись, можно объяснить почти любые наблюдения из нее. Но подтвердить, менялись ли они описанным образом, мы не можем, поскольку эксперименты в ранней Вселенной недоступны. Следовательно, гипотеза Гупты слабо проверяема, что ставит ее на грань ненаучности.

Альтернативные мнения

Есть и другие попытки объяснить существование очень зрелых галактик в очень ранней Вселенной — на основе одной только теории относительности и без привлечения экзотических гипотез типа «утомленного света» или изменяющихся со временем физических констант. По мнению сторонников этой точки зрения, наша Вселенная — циклическая, претерпевающая сжатия с последующим расширением.
При этом из одного цикла Вселенной в другой переходит значительная популяция «реликтовых» черных дыр, служащих «семенами» для быстрого формирования галактик и такого же быстрого начала звездообразования в них. Наиболее полная на сегодня теория из такого ряда изложена в вышедшей в 2023 году книге физика Николая Горькавого «Осциллирующая Вселенная». В рамках нее возраст Вселенной тоже превышает 13,8 миллиарда лет (столько прошло лишь с последнего Большого взрыва), но уже не вдвое, а в огромное количество раз.
Статья спизжена отсюда

Отличный комментарий!

заголовок прям напомнил
,космос,астрономия,наука,вселенная,длиннопост
Кьюриозити на Марсе: натюрморт с марсоходом.
,Наука,Космос, физика, биология, астрономия.,разное,Кьюриозити,Марс,фото,марсоход,космос,планеты

Astro Birthday

Здравствуйте, уважаемые пидоры и пидорессы
Делюсь с вами своей очередной поделкой - Astro Birthday - приложение показывает сколько тебе лет на других планетах солнечной системы (и экзопланетах), а также когда у тебя следующий день рождения на них. Также оно присылает уведомление, если завтра у тебя днюха на какой-нибудь из солнечный или лайкнутых планет.
Есть локализации: английская, русская, украинская, японская, польская, немецкая, французская, итальянская, испанская, нидерландская.
Приложение в PlayMarket

Новое объяснение красноты северного полюса Харона

Исследователи из Университета Пердью(США) разработали новую теорию, объясняющую, почему у спутника Плутона Харона красное пятно на северном полюсе.
Предыдущие исследования показали, что многие ледяные объекты в поясе Койпера частично или полностью покрыты красновато-коричневым веществом - толином, который образуется, когда органические вещества облучаются радиацией. В этой новой работе исследователи предполагают, что толин образовался из метана, высвобождаемого из криовулканов.

Чтобы проверить свою теорию, исследователи обратились к спутнику Плутона Харону, чей северный полюс покрыт толином. Они отмечают, что согласно предварительным исследованиям, причиной появления красного пятна являются газы, выходящие из Плутона. Но предыдущие исследования также показали, что спутник когда-то был покрыт жидким океаном, содержащим множество различных веществ, в том числе метан.

Ученые предположили, что когда океан замерз, метан попал в ледяную ловушку. Когда вода оказывалась под давлением, во льду образовывались трещины, что периодически приводило к извержениям, способствующим выбросам некоторого количества газообразного метана. Газ мог добраться до северного полюса, где замерз и упал на поверхность, после чего миллионы лет подвергался солнечному излучению, которое заставило его покраснеть.

Исследователи создали симуляцию молекул метана, дрейфующих в атмосфере Харона, вычисляя, сколько метана могло бы сбежать при таком сценарии и сколько могло бы дойти до северного полюса. Они обнаружили, что примерно 1000 миллиардов тонн газа могла достигнуть северного полюса - более чем достаточно, чтобы создать красное пятно.

Телескоп «Хаббл» обнаружил загадочный взрыв там, где его не должно быть

Примерно один-два раза в год астрофизики регистрируют в разных частях неба мощные голубые вспышки — одно из самых ярких событий во Вселенной. Эти вспышки появляются на небе неожиданно и затем довольно быстро исчезают. За все время наблюдений их открывали только в галактиках. Но последнее событие, которое получило обозначение AT2023fhn, или «Зяблик», произошло там, где ученые не ожидали его увидеть.
LFBOT выглядит как-то так
В 2018 году наземный телескоп ATLAS-HKO, расположенный в обсерватории Халеакала на Гавайях (США), зарегистрировал в оптическом диапазоне яркую вспышку взрыва в галактике CGCG 137-068. Это событие назвали AT2018cow, или «Корова», расстояние до него составило 200 миллионов световых лет. Примечательно оно было по двум причинам. Во-первых, вспышка оказалась ярче обычной вспышки сверхновой в 10-100 раз, а во-вторых, «Корова» исчезла спустя несколько дней.
Такие явления исследователи прежде никогда не видели, поэтому точно не знали, что именно они обнаружили. Выдвигались предположения, что AT2018cow — редкий тип сверхновых. Но обычно сверхновые так себя не ведут: на небе они «светятся» на протяжении недель.
«Корова» (AT2018cow). Снимок телескопа ATLAS-HKO
После «Коровы» подобные вспышки взрывов ученые открывали один-два раза в год, некоторые были намного ярче предыдущих. С 2018-го по 2022-й специалисты обнаружили шесть таких событий. Их даже отнесли к отдельному классу астрономических объектов, которые назвали Luminous fast blue optical transients (LFBOT). Все эти явления объединяют два важных свойства:
— Они запредельно яркие, их яркость несопоставима со сверхновыми, что делает эти вспышки одними из самых ярких событий во Вселенной;
— Их наблюдают только в галактиках.
В октябре 2023 года группа астрофизиков из ESA и NASA опубликовала в электронном архиве препринтов arXiv статью, в которой рассказала, что с помощью совместной работы наземных телескопов и орбитальной обсерватории «Хаббл» удалось открыть и описать седьмое LFBOT-событие. Оно в корне отличается от шести предыдущих. Статья ученых готовится к выходу в журнале Monthly Notices of the Royal Astronomical Society.
Новая вспышка взрыва получила обозначение AT2023fhn, или «Зяблик», ее открыли 10 апреля «Установкой для поиска транзиентов имени Цвикки» (Zwicky Transient Facility). Сперва наземные телескопы обсерватории Gemini, которые находятся в Чили, измерили спектр видимого излучения «Зяблика». Выяснилось, что температура вспышки составляет 20 тысяч градусов Цельсия — не такая высокая, как у некоторых массивных звезд, и, конечно, не такая, как у вспышек сверхновых. Затем телескопы помогли определить расстояние: свет от события шел до Земли три миллиарда лет — на огромном удалении, на котором его может «разглядеть» только космический телескоп. Для этой цели выбрали «Хаббл».
 «Зяблик» (AT2023fhn). Снимок телескопа «Хаббл»
Когда космическая обсерватория стала наблюдать за «Зябликом» в разных частях спектра, ученые поняли, что знают об LFBOT-событиях еще меньше, чем думали ранее. В отличие от шести других аналогичных вспышек, новая наблюдалась не в галактике, а в пустом межгалактическом пространстве — примерно в 50 тысячах световых лет от соседней спиральной галактики и примерно в 15 тысячах световых лет от галактики меньшего размера.
«Мы предполагали, что эти вспышки взрывов могут относиться к редкому типу сверхновых с коллапсирующим ядром — гигантским звездам, которые по астрономическим меркам недолговечны. Эти объекты, прежде чем превратиться в сверхновую, не успевают удалиться очень далеко от места своего рождения — скопления новорожденных звезд. Все предыдущие вспышки мы открывали в спиральных рукавах галактик с интенсивным звездообразованием. То есть объяснение этих вспышек редким типом сверхновых нам подходило. Но последнее событие показало, что мы ошибались», — объяснил ведущий автор исследования Эшли Краймс.
У астрофизиков есть два объяснения природы «Зяблика»:
1. Вспышка вызвана тем, что черная дыра массой от 100 до нескольких тысяч масс Солнца разорвала на части массивную звезду. Шаровое звездное скопление — наиболее вероятное место, где можно было бы обнаружить черную дыру средних размеров. Возможно, «Зяблик» вспыхнул внутри шарового звездного скопления во внешнем гало одной из двух соседних галактик;
2. «Зяблик» — результат столкновения двух нейтронных звезд, движущихся далеко за пределами своей родительской галактики. Эти звезды двигались по спирали навстречу друг другу в течение миллиардов лет, после чего столкнулись, что привело к килоновой — взрыву, излучаемая энергия которого может превосходить в тысячу раз энергию, излучаемую новыми. Согласно гипотезе, если одна из нейтронных звезд сильно «намагничена» (обладает исключительно сильным магнитным полем ) — речь идет о магнетаре, — это может значительно увеличить мощность взрыва. Тогда яркость вспышки может в 100 раз превысить яркость вспышки обычной сверхновой.
В любом случае ученые надеются, что разгадать тайну природы «Зяблика» им поможет космический телескоп «Джеймс Уэбб». По крайней мере, он прояснит, произошла вспышка внутри шарового звездного скопления во внешнем гало одной из двух соседних галактик или нет.
Статья спизжена отсюда

Отличный комментарий!

Империя сражается.

На другой планете впервые нашли признаки вещества, которое на Земле вырабатывают водоросли

Наблюдения за экзопланетой в ста с лишним световых лет от нас позволили выявить в ее атмосфере газы, которые могут указывать на поверхностный водный океан. Еще там нашли признаки органического соединения, которое на Земле выделяют только живые организмы.
Экзопланета K2-18 b в представлении художника
В 2015 году на орбите звезды красного карлика K2-18 в созвездии Льва космический телескоп NASA «Кеплер» обнаружил экзопланету, которую обозначили как K2-18 b. Расстояние от нее до Земли — 120 световых лет, а само открытие было сделано с помощью транзитного метода. Он основан на обнаружении падения светимости звезды во время прохождения планеты перед диском родительского светила.
Дальнейшие наблюдения за K2-18 b, проведенные космическими телескопами «Спитцер» и «Хаббл», показали, что экзопланета в 8,6 раза массивнее Земли, а ее радиус в 2,6 раза больше земного. В ее атмосфере много водяного пара, есть водород и гелий.
Помимо этого, выяснилось, что K2-18 b вращается в так называемой зоне обитаемости — на таком расстоянии от родительской звезды, на котором планета получает необходимое количество тепла, чтобы вода на ее поверхности не превращалась в лед, а существовала в жидком состоянии.
Размер обитаемой зоны, уровень радиации, частота вспышек и продолжительность жизни звезд разного типа: красных (сверху), оранжевых (в центре) и желтых (снизу) карликов
Stellar Temperature (K)
Stellar Type,космос,астрономия,наука,экзопланеты,Джеймс Уэбб,Реактор познавательный,длиннопост
Размер обитаемой зоны для разных типов звёзд
Иными словами, K2-18 b оказалась «суперземлей» — миром, масса которого превышает массу Земли, но меньше массы Нептуна, обладающим гелиево-водородной атмосферой с водными облаками и находящимся в «зоне обитаемости». В 2020 году ученые предположили, что на поверхности экзопланеты находится водный океан, кроме того, она может быть пригодна для поддержания жизни земного типа.
Чтобы оценить вероятность такого сценария, необходимо глубже исследовать состав атмосферы K2-18 b, ведь по наличию определенных газов можно понять, какие условия там существуют. Проблема в том, что подобные экзопланеты довольно сложно изучать, их буквально затмевает свет гораздо более крупных родительских звезд. Для детального анализа подходят лишь немногие методы исследования экзопланет, к тому же для полноты картины наблюдения важно проводить более чувствительными приборами с высокой разрешающей способностью.
К счастью, такие инструменты у людей имеются — самый большой и мощный космический телескоп в истории человечества «Джеймс Уэбб». Группа астрономов из Кембриджского университета (Великобритания) задействовала эту орбитальную обсерваторию, чтобы проанализировать свет родительского светила экзопланеты K2-18 b, проходящий через ее атмосферу, и определить наличие газов. Во время прохождения экзопланеты на фоне диска звезды свет последней проникает в верхние слои атмосферы экзопланеты, поэтому, изучая спектр этого света, можно выявить химические элементы, которые присутствуют в атмосфере космического тела. Результаты работы британские астрономы готовят к публикации в The Astrophysical Journal Letters, сейчас с ними можно ознакомиться на сайте ESA.
Данные, полученные телескопом «Уэбба», показали, что в атмосфере K2-18 b присутствуют углекислый газ (CO2), метан (CH4) и углерод (С). Наличие метана и углекислого газа в атмосфере экзопланеты, как предположили исследователи, подтверждает гипотезу о том, что под гелиево-водородной газовой оболочкой K2-18 b находится жидкий океан.
Метан легко разрушается под воздействием ультрафиолета, поэтому для поддержания его уровня в атмосфере необходимы постоянные источники. На Земле основные природные источники метана — озера, океаны, болота и живые организмы.
Спектры K2-18 b, полученные с помощью приборов «Уэбба» NIRISS (устройство формирования изображения в ближнем инфракрасном диапазоне и бесщелевой спектрограф) и NIRSpec (спектрограф ближнего инфракрасного диапазона). В атмосфере экзопланеты выявлено наличие метана, углекислого газа, а также признаки молекул диметилсульфида
Также телескоп обнаружил в атмосфере K2-18 b признаки молекулы органического соединения диметилсульфида (CH3SCH3). На нашей планете это продукт жизнедеятельности бактерий, еще его выделяют микроскопические водоросли, то есть на Земле диметилсульфид в скольких-нибудь заметных количествах производят только живые организмы.
«Результаты нашего исследования стали возможны благодаря беспрецедентной чувствительности "Уэбба", телескоп помог обнаружить спектральные особенности K2-18 b всего за два прохождения экзопланеты на фоне диска родительской звезды. Для сравнения, одно наблюдение транзита с "Уэбба" обеспечило точность, сопоставимую с восемью наблюдениями транзита с "Хаббла", проведенными в течение нескольких лет и в относительно узком диапазоне длин волн», — объяснил один из авторов исследования Субхаджит Саркар.
Ученые пока не делают поспешных выводов о том, что K2-18 b может быть пригодна для жизни земного типа. Они подчеркнули, что для подтверждения этой гипотезы нужны дальнейшие наблюдения, которые позволят точнее определить концентрацию диметилсульфида в атмосфере экзопланеты.
В будущих исследованиях британские астрономы планируют использовать спектрометр «Джеймса Уэбба» MIRI (прибор среднего инфракрасного диапазона), который, как надеются ученые, подтвердит их выводы и поможет измерить концентрацию газов в атмосфере, что еще больше прояснит, какие условия существуют на K2-18 b.
Стоит отметить, что хотя экзопланета находится в «зоне обитаемости» и, как теперь стало известно, в ее атмосфере содержатся молекулы метана, углекислого газа и углерода, это не означает, что на K2-18 b может быть пригодная для жизни обстановка. Большой размер экзопланеты (радиус в 2,6 раза больше земного) говорит о том, что значимую часть ее «внутренностей» может занимать мантия изо льда, как на Нептуне. С другой стороны, если там на поверхности плещется жидкий океан, он может быть слишком горячим, чтобы поддерживать жизнь.
Статья спизжена отсюда

Отличный комментарий!

Да вы блядь кто подставил кролика Роджера найти не можете. А тут пердежь водорослей с другой планеты разглядели.
Кролик один, а водорослей целый океан (а пердежа вообще целая атмосфера).
Здесь мы собираем самые интересные картинки, арты, комиксы, мемасики по теме космос планета наука (+1000 постов - космос планета наука)