Результаты поиска по запросу «

маятник наука

»

Запрос:
Создатель поста:
Теги (через запятую):



физика наука Песчаный маятник колебания маятника залипалово песочница 

Развернуть

видео залипалово физика наука волны маятник песочница 

Развернуть

физика наука магнит магнитное поле магнетрон 

⚡ "Маятник Станислава" ⚡

1.Маятник Ньютона - колебания 1-2 минуты.
2.Маятник Станислава - колебания до 4 часов.
Всем известен маятник Ньютона. Но слишком быстро он останавливается.

Меня интересовало как происходит передача импульса у атомов. Ведь атомы не соударяются как Шары Ньютона. Их столкновению препятствуют силы отталкивания. Для этого были сделан маятник с магнитными шарами, назовём его «Маятник Станислава».

В «Маятнике Станислава» передача импульса происходит совсем не так как в колыбели Ньютона. Не настолько прямолинейно и одномоментно.

Развернуть

наука лазер эксперимент 

Лазерный луч притянул макроскопический объект.

Китайские физики сообщили о том, что им удалось заставить лазерный луч видимого диапазона притягивать макроскопический объект в условиях низкого давления. В основе продемонстрированного эффекта лежит сила Кнудсена, которая возникает из-за разности температур в тонкой пленке. Ученые смогли добиться микроньютоновой тяги, приложенной к миллиграммовому объекту. По их мнению, новая технология будет полезна в условиях ближнего космоса или атмосферы Марса. 

А в XX веке физики даже нашли этому эффекту практическое применение — они создали оптический пинцет. Суть его работы заключается в фокусировке лазерного луча в точку пространства, вокруг которой возникает градиентная сила, удерживающая тела вблизи нее. Это изобретение было удостоено Нобелевской премии по физике 2018 года.

Оптические пинцеты совершили революцию в биологии, химии и физике благодаря своей способности к манипуляции атомами, нано- и микрообъектами. Однако более массивные тела свет удерживать не способен. Тем не менее, в условиях невесомости давление света может быть ощутимым. На этом основана технология солнечного паруса.

Передача импульса от фотонов к парусу при поглощении или отражении — не единственный механизм, который может заставить массивные тела двигаться. В 2021 году Азади с коллегами смогли оказать световое давление на полимерный диск диаметром шесть миллиметров и толщиной в полмикрометра за счет силы Кнудсена, которая возникает из-за разницы температур по обе стороны тонкой пленки. Теперь же физики из Университета науки и технологий в Циндао во главе с Лэй Ваном (Lei Wang) заставили макроскопический объект таким же способом притянуться под действием лазера, реализовав, по сути, концепцию притягивающего луча.

Температура характеризует среднюю кинетическую энергию молекул в газе. Если с одной стороны пленки температура больше, чем с другой, передача ей импульса будет несимметричной, и может возникнуть сила Кнудсена. Однако для этого толщина пленки должна быть сопоставима с длиной свободного пробега молекул газа, которая, в свою очередь, связана с давлением. Если давление слишком большое, этот эффект незаметен на фоне флуктуаций передаваемого импульса. Если, наоборот, слишком маленькое — количество соударений окажется слишком мало, чтобы создать ощутимую тягу. Ранее авторы исследовали этот эффект для пористых графеновых губок и обнаружили максимум кнудсенновской тяги при пяти паскалях.

Чтобы заставить тягу работать против направления луча, ученые размещали кусочек пористого графена размерами 5×3×0,5 миллиметра на стеклянной подложке толщиной 0,17 миллиметра. Стекло прозрачно для видимого излучения и потому остается холодным, в то время как графен хорошо его поглощает и нагревается. Таким образом, если светить на образец лазером со стороны стекла при низком давлении, луч должен его притягивать.

На первом этапе физики качественно исследовали эффект с помощью крутильного маятника в прозрачной вакуумной камере. Они наблюдали притяжение при облучении образца несфокусированными лазерными лучами на длинах волн 360, 488 и 532 нанометра мощностями в десятки милливатт. Для 488 нанометров физики увидели линейное увеличение отклонения с 1 до 8,3 градуса с ростом мощности с 17 до 85 милливатт. Эксперименты с давлением также подтвердили, что при пяти паскалях сила Кнудсена максимальна.

Авторы не смогли измерить непосредственно силу с помощью крутильного маятника, поэтому во второй части работы использовали более традиционный гравитационный маятник. Он представлял собой медную пластину, подвешенную на медной жерди, к концу которой был присоединен образец. Для контроля отклонения они напыляли небольшую золотую пленку, которая играла роль зеркала, отражающего дополнительный измеряющий луч на экран с линейкой, расположенный в трех метрах от вакуумной камеры. Механический анализ связал показания линейки с силой тяги.

В результате физики узнали, что 488-нанометровый луч мощностью 85 милливатт притягивает образец с силой 0,8 микроньютона. Примечательно, что это на три порядка больше, чем сила светового давления, которая в условиях эксперимента составила 0,28 наноньютона. Авторы уверены, что лазерные лучи, работающие по такому принципу, могут быть полезны в условиях разреженной атмосферы, например, в ближнем космосе или на Марсе.

Ссыль: https://opg.optica.org/oe/fulltext.cfm?uri=oe-31-2-2665&id=525052

Развернуть

Отличный комментарий!

На шаг ближе
A117 A11713.01.202321:44ссылка
+29.9
Warkot Warkot13.01.202321:52ссылка
+38.7

lisanne_waifu #Anime фэндомы несекретный бондаж физика наука Ero anime 

Математический маятник

pivot iSdhne The shorter the rod, the fastest the swing pivot,lisanne_waifu,Anime,RDR, Reshotka Democratic Republic,фэндомы,несекретный бондаж,физика,наука,Ero anime
Развернуть

Маятник Ньютона физика наука Изобретения shut up and take my money ставь теги гифки 

Развернуть

LK-99 сверхпроводники физика наука кто бы мог подумать 

LK-99 не сверхпроводник

Загадка южнокорейского «комнатного сверхпроводника» LK-99 разгадана в рекордные сроки. Мировое научное сообщество не могло пройти мимо такой «сенсации», а накопленный в поисках высокотемпературной сверхпроводимости опыт позволил быстро повторить эксперимент южнокорейских учёных и оценить его с точки зрения теории.

LK-99,сверхпроводники,физика,наука,кто бы мог подумать

Чистые кристаллы LK-99, выращенные группой из института исследований твердого тела им. Макса Планка в Штутгарте, Германия

Увы, судя по всему, революция в сверхпроводимости откладывается. Два основных индикатора сверхпроводимости — это левитация в магнитном поле (эффект Мейсснера) и резкое падение удельного сопротивления току — были объяснены с позиций обычной физики и не имеют никакого отношения к сверхпроводимости. Южнокорейских учёных подвели загрязнённые примесями образцы и ограниченные знания в ряде областей химии.

В конце июля группа южнокорейских учёных выложила на сайт препринтов научных статей две работы на английском языке, в которых рассказала о сенсационном открытии материала LK-99, который обладал сверхпроводимостью при комнатной температуре и обычном давлении. Подобное открытие очень сильно изменило бы наш мир. По крайней мере в энергетике, где потери от транспортировки электричества очень и очень велики и постоянно растут. Одна из статей была дополнена теоретическими выкладками, которые выглядели достаточно убедительно, чтобы к открытию отнеслись со всем вниманием.

Первые попытки синтезировать LK-99 независимыми группами дали противоречивый результат. Кто-то увидел «левитацию», у кого-то получилось измерить нулевое сопротивление току при комнатных температурах, а у кого-то и вовсе ничего не получилось. Не обошлось и без фейков, что только добавило путаницы. Серьёзной проблемой для независимого синтеза LK-99 стало то, что авторы исследования не предоставили детального описания синтеза абсолютно чистого материала и, судя по всему, сами стали жертвой собственной оплошности.

Следует сказать, что современные теоретические инструменты позволяют моделировать электронную и атомарную структуры материалов и очень точно описывать их химические и физические свойства. Но при наличии неизвестных по объёму и составу примесей такие расчёты обычно ошибочны, что, похоже, произошло в случае с LK-99. По горячим следам этот материал был проверен с помощью теории функционала плотности и отчасти подтверждал открытие южнокорейской команды. Как сегодня становится понятно, теоретиков подвели исходно ошибочные данные экспериментаторов.

Точку в «сверхпроводимости» LK-99 поставили учёные из Института исследования твердого тела Макса Планка в Штутгарте (Германия). Они вырастили кристаллы LK-99, а не синтезировали его методом отжига, как это сделали корейцы. Выращивание позволило избежать появления примесей в материале и, прежде всего, сульфида меди (Cu2S), который, как становится ясно, и стал причиной «сенсационного» открытия.

Сверхчистый материал LK-99 (Pb8.8Cu1.2P6O25) оказался не сверхпроводником, а очень даже хорошим изолятором. При этом материал проявлял некоторые свойства ферромагнетизма и диамагнетизма, но совершенно недостаточные даже для частичной левитации.

«Поэтому мы исключаем наличие сверхпроводимости, — заключили авторы. — Когда у нас есть монокристаллы, мы можем чётко изучать внутренние свойства системы». Опираясь на визуализацию электронной структуры чистого материала, немецкие исследователи показали, что она не допускает проявления сверхпроводимости, а её признаки в южнокорейском эксперименте, скорее всего, проявлялись за счёт наличия в образцах примесей сульфида меди.

Отдельно о свойствах сульфида меди высказался другой учёный — химик Прашант Джайн (Prashant Jain) из Иллинойсского университета в Урбане-Шампейне. Он указал, что температура 104,8 °C, при которой корейцы фиксировали десятикратное падение удельного сопротивления материала примерно с 0,02 Ом/см до 0,002 Ом/см — это температура фазового перехода сульфата меди. Естественно, что при фазовом переходе сопротивление материала меняется, о чём южнокорейские учёные должны были бы знать.

Тем самым загрязнение образцов LK-99 примесями в техпроцессе «на коленке» и незнание некоторых аспектов их химического поведения привели к тому, что южнокорейские учёные приняли желаемое за действительное — увидели в двух случайных признаках сверхпроводимость, которой там не было.

Статья спизжена отсюда

Развернуть

Отличный комментарий!

Ясно. Люди в черном решили, что нам пока рано использовать новые технологии)
Evil-dude Evil-dude17.08.202317:28ссылка
+70.5

космос черные дыры темная энергия наука астрономия астрофизика 

Черные дыры могут быть источником темной энергии

космос,черные дыры,темная энергия,наука,астрономия,астрофизика

Наверное, многие уже читали эту новость. У меня это все никак из головы не выходит, потому что не смог разобраться даже в сути, а очень хочется. Может, найдутся пидоры-астрофизики, которые разобрались и смогут объяснить?

Суть вкратце для тех, кто не в курсе.

На той неделе вышла работа международной группы ученых, в которой они связали рост черных дыр с расширением Вселенной. Они взяли 500 гигантских эллиптических галактик разного возраста, от почти современных до 9 млрд. лет назад, и измерили массы их центральных сверхмассивных черных дыр. И выяснили, что рост этих СМЧД происходил намного быстрее, чем должен по существующим представлениям. Дыры получаются в 8-20 раз тяжелее, чем должны.

Затем они решили проверить связь роста этих ЧД расширением (которое, как известно, ускоряется - за что и отвечает темная энергия) Вселенной. Сама идея, как я понял, не нова и появилась еще в 60-е, но вот доказательств убедительных не было. А теперь появились. Корреляция оказалась очень сильной, связь существует с вероятностью 99,98%. И если это не просто корреляция, но именно причинная связь, то черные дыры могут являться источником темной энергии.

https://iopscience.iop.org/article/10.3847/1538-4357/acac2e

https://habr.com/ru/news/t/717740/

Один из авторов исследования в интервью объясняет, что если они правы, то у всех черных дыр есть вместо сингулярности ядро из темной энергии. Упавшая под горизонт материя на определенном этапе претерпевает своеобразный фазовый переход и превращается в темную энергию. Еще он говорил, что в этом ядре появляется вселенная Де Ситтера, но это уже совсем хз что такое.

Ладно, допустим. Я совершенно не понимаю, каким образом темная энергия сбегает из-под горизонта черной дыры, чтобы заполнять вселенную. Также я не понял его ответ на вопрос, почему темная энергия распределена везде равномерно, не завися от массы черной дыры. И вообще за счет чего происходит рост массы ЧД? Не сильно помогало и то, что он слегка заикался, часто сбивался, да к тому же британец.

Развернуть

Отличный комментарий!

madpumpkin madpumpkin25.02.202307:42ссылка
-64.8
Ага. То, что ученые натурально сфоткали парочку и они выглядят именно так, как и предполагалось, ничего не доказывает. Лол
Sabeer Sabeer25.02.202308:44ссылка
+26.1
Ну справедливости ради сфоткали не чёрную дыру а диск аккреции вокруг нее. Так что официально черной дыры мы пока ещё не видели
Gloom182 Gloom18225.02.202308:54ссылка
+14.9
Ты ещё фотку горизонта событий запроси. Чтобы повнимательнее рассматривать сраное ничего.
5482 548225.02.202308:58ссылка
+46.3

гиф физика наука лекция маятник 

Yeahh, physics bitch!
Развернуть

гифки физика наука лекция маятник майли сайрус 

Вариант развития этого поста:


Развернуть
В этом разделе мы собираем самые смешные приколы (комиксы и картинки) по теме маятник наука (+1000 картинок)