sfw
nsfw

Результаты поиска по запросу "всё о белках биология"

Cell Pisture Show - регулярный конкурс научной фотографии, который проводится издательством Cell Press, публикующим научные журналы. По итогам конкурса лучшие фотографии с описаниями рассылаются подписчикам CP на почту.
Этот выпуск посвящён синтетической биологии.

Биология Plug N' Play
Anne-CécileReymann, Manuel Théry, iRTSV в Гренобле, Франция

,Всё самое интересное,интересное, познавательное,,фэндомы,Cell Picture Show,наука,биология,синтетическая биология,длиннопост

Когда Ваш жёсткий диск ломается, Вы заказываете новый онлайн и меняете их местами. Почему мы не можем сделать то же самое с биологическими системами? От ДНК-роботов и органов-на-чипе к нанощетинкам, захватывающим и высвобождающим лекарства, это слайд-шоу рассматривает две больших цели синтетической биологии: создавать новые биологические системы и перепроектировать существующие из не-биологических компонентов
Изображение: Филаменты актина нуклеированы в форме кругов диаметром 20-40 микрон с использованием микропаттернинга (см. далее) и сфотографированы путём эпифлуоресцентной микроскопии.


Выпуская актин
Anne-CécileReymann, Manuel Théry, iRTSV в Гренобле, Франция

,Всё самое интересное,интересное, познавательное,,фэндомы,Cell Picture Show,наука,биология,синтетическая биология,длиннопост

Что регулирует архитектуру актина в клетке? Недавно (относительно - прим.пер.), Théry и коллеги продемонстрировали, что для организации F-актиновыхфиламентов (жёлтые) в параллельные пучки, какие встречаются в клетках, - без поперечных связей и клубков - нужна только правильная ориентация актиновых ядер.
Изображение:
Ядра актина размещены на покровном стекле в форме круга путём микропаттенрнинга с применением глубокой UV-литографии. Полимеризация актина вызвана последующим добавлением мономеров актина, профилина и комплекса Arp2/3. Плотная разветвлённая сеть филаментов образовалась на круге (ярко жёлтый), в то время как не-разветвлённые филаменты выросли снаружи от круга в виде параллельных пучков. 7% мономеров актина было помечено красителем Alexa568, который позволил сфотографировать их с применением классической эпифлуоресцентной микроскопии(прямой микроскоп Olympus BX61, сухой объектив x40).


Перепрограммируя форму
Timothée Vignaud, Qingzong Tseng, Manuel Théry, iRTSV вГренобле, Франция

,Всё самое интересное,интересное, познавательное,,фэндомы,Cell Picture Show,наука,биология,синтетическая биология,длиннопост

Микропаттернингтакже контролирует размер и форму клетки. Здесь, Théry и коллеги нанеслиадгезивные молекулы (фибронектин) на стёкла в разных формах - Т-образной(сверху справа) и H-образной (снизу справа). Когда они пересадили одну или двеклетки на полученный микропаттерн, те приняли соответствующую форму: клетка наT-форме стала треугольной, пара клеток на H-форме образовала квадрат. Если они"рисовали" паттерн рядом с клеткой, уже закрепившейся на подложке(слева), клетка постепенно распространялась на него и создавала стресс-волокна актина по краям.
Изображение:
Слева:клетка RPE1 экспрессирует LifeAct-GFP, который отмечает актиновый скелет в живых клетках. После того, как рядом с клеткой был нарисован микропаттерн,каждые 20 минут получали изображение на инвертированном микроскопе Nikon TE2000(объектив x100 с маслом).
Справа:единичная клетка RPE1 на Т-паттерне и пара клеток MCF10A на H-паттерне были пермеабилизованы параформальдегидом после посадки на микропаттернированное стекло. Актиновая сеть и фокальные контакты окрашены зелёным (фалоидин-FITC) и красным (антитела к винкулину/паксиллину), соответственно. Межклеточные контакты окрашены белым (антитела к бета-катенину). Изображения получены на микроскопе Leica DMRA (объектив x100 с маслом).


ДНК-роботы
Campbell Strong, Shawn Douglas, Gael McGill, Wyss Institute forBiologically Inspired Engineering at Harvard University, Бостон, США

,Всё самое интересное,интересное, познавательное,,фэндомы,Cell Picture Show,наука,биология,синтетическая биология,длиннопост

Одна из главных целей синтетической биологии - использовать строительные блоки живых систем (ДНК, РНК, протеины, липиды) для создания инструментов и устройств,которые не существуют в природе. Для примера, в "ДНК-оригами",длинные одноцепочечные молекулы ДНК с длиной свыше 1000 пар оснований складывались в кастомизированные формы за счёт взаимодействия с малыми"молекулами-образцами".
Изображение:
Дуглас и коллеги использовали подход "ДНК-оригами" для постройки бочонкообразного наноробота (35x35x45 нанометров), который может быть наполнен лекарствами, фрагментами антител (розовые) и другими наночастицами. Аптамер ДНК(зелёный) держит бочонок закрытым, но, когда робот контактирует с антителами к аптамеру, раскрывает его (например, на поверхности клетки). Робот был разработан при помощи программ Molecular Nay и CadNano.


К минимальным клеткам
Jorge Bernardino de la Serna, University of Southern Denmark, Оденсе, Дания

,Всё самое интересное,интересное, познавательное,,фэндомы,Cell Picture Show,наука,биология,синтетическая биология,длиннопост

Одним из самых амбициозных устремлений синтетической биологии является создание"минимальных клеток", которые полностью повторяют функции естественных клеток - потребление энергии, градиент ионов, хранение информации,изменчивость. Хотя такие технологии всё ещё далеко на горизонте, исследователи достигли большого прогресса в создании "полусинтетических клеток",которые имитируют определённые функции клеток, такие как синтез белков или липидных мембран. Многие из этих искусственных клеток обитают в липосомах или искусственных везикулах с билипидной мембраной.
Изображение:
Каждая микрофотография показывает гигантскую липосому диаметром 20-50 микрон,состоящую из жиров и протеинов поверхности альвеол лёгких млекопитающих без химической обработки. Липосомы были напрямую выделены из смывов с лёгкого.Каждая микрофотография получена при разных температурах или составах жиров и белков легочного сурфактанта. Изображения получены на лазерном сканирующем инвертированном микроскопе Zeiss LSM 510 (объектив x40 с водной иммерсией), при конвенциональном или двухфотонном возбуждении флуоресценции.


Поймай-И-Отпусти
Joanna Aizenberg, Harvard School of Engineering and Applied Sciences, Бостон, США

Ли	щ / Я/г ^
" т à i ^ ж	%/Ш,Всё самое интересное,интересное, познавательное,,фэндомы,Cell Picture Show,наука,биология,синтетическая биология,длиннопост

Другая крупная цель синтетической биологии - создание из неестественных молекул и соединений инструментов и устройств, имитирующих свойства природных. Например,Joanna Aizenberg и её лаборатория стали пионерами использования само-организующихся синтетических нановолокон для создания устройств,захватывающих и отпускающих лекарства, которые выглядят поразительно похожими на маленькие щупальца (вы же не думали, что пост обойдётся без тентаклей? -прим. пер.).
Изображение:
Сканирующая электронная фотография наноразмерных щетинок, удерживающих сферу. Щетинки сделаны из эпоксидной смолы и погружены в жидкость. Пока щетинки засыхают, они захватывают то, что поблизости, например лекарства или наночастицы. Щетинки сохраняют энергию и их можно заставить высвободить захваченные частицы. Каждая щетинка примерно в тысячу раз тоньше человеческого волоса.


Нанодреды
Joanna Aizenberg, Harvard School of Engineering and Applied Sciences, Бостон, США

,Всё самое интересное,интересное, познавательное,,фэндомы,Cell Picture Show,наука,биология,синтетическая биология,длиннопост

Самоорганизующиеся нановолокна могут также быть использованы при создании наноструктур с уникальными спиральными формами и иерархической структурой, каковые часто могут наблюдаться в живых системах. Упорядоченная матрица нановолокон погружается в жидкость и, по мере испарения жидкости, формирует спиральные пучки и пучки пучков с заданными свойствами, зависящими от состава и расположения нановолокон в матрице.
Изображение:
Сканирующая электронная фотография наноразмерных щетинок, сформировавших иерархическую спираль по мере высыхания жидкости.
Больше здесь


Лёгкое на чипе
Donald Ingber, Wyss Institute for Biologically Inspired Engineering atHarvard University, Бостон, США

,Всё самое интересное,интересное, познавательное,,фэндомы,Cell Picture Show,наука,биология,синтетическая биология,длиннопост

Один из проявляющихся трендов синтетической биологии - симуляция функций и активности живых органов на микроустройствах, произведённых, как микрочипы и выстеленных живыми клетками человека. Donald Ingber и коллеги использовали эту стратегию для создания "лёгкого на чипе", которое содержит пустые каналы,разделённые гибкой пористой мембраной, выстеленной с одной стороны клетками эпителия альвеол, а с другой - клетками легочных капилляров. Подвергая межтканевой интерфейс циклической деформации, эти устройства имитируют дыхательные движения. Этот простой орган на чипе повторяет ответ лёгкого человека на инфекции, воспаление и токсины. Подобные устройства предлагают новый подход к изучению лекарств и оценке токсичности соединений.


Синтезируя органы
Hidetaka Suga, Yoshiki Sasai, RIKEN Center for Developmental Biology, Кобе, Япония

,Всё самое интересное,интересное, познавательное,,фэндомы,Cell Picture Show,наука,биология,синтетическая биология,длиннопост

Хотя обычно эти технологии не относят к одной группе, технологии использования стволовых клеток имеют большую общую цель с синтетической биологией: создание искусственных органов. Ранее Sasai и его команда создали сетчатку в 3D-культуре эмбриональных стволовых клеток (ESC) и, на момент выхода выпуска, им удалось"вырастить" вне организма часть гипофиза. В чём заключался секрет создания этой железы? В организации двух слоёв эпителиальных клеток (эктодермы и нейродермы), чтобы на их интерфейсе мог сформироваться зачаток гипофиза -карман Ратке.
Изображение:
Слева:натуральный орган, сагиттарльный срез развивающегося кармана Ратке (красный)эмбриона мыши на 12 день. Карман Ратке помечен красным при помощи антител кPitx1, в то время, как гипоталамус помечен зелёным за счёт антител к Rx.
Справа:искусственный орган, карманы Ратке (зелёные и белые) самообразовались в скоплениях эмбриональных клеток на 13 сутки. Зелёные, белые и красные цвета ассоциированы с антителами к Lim3, Pitx1 и Tuj1, соответственно. Для окраски ядер в синий цвет на обоих изображениях использовался Dapi.


БОНУС: пчёлы-роботы
Alex Kushleyev, Daniel Mellinger, Vijay Kumar, University of Pennsylvaniaand KMel Robotics, Филадельфия, США


И, наконец,почему бы не обсудить "синтез" сложного биологического поведения?Один из наиболее часто повторяемых типов поведения - коллективный полёт пчёл и других насекомых, известный, как роение. Vijay Kumar и его группа сделали впечатляющий шаг к повторению роения у летающих дронов. Они использовали полностью автономные (без дистанционного управления!) квадрокоптеры, которые способны совместно маневрировать вокруг препятствий, лететь в определённой формации и объединяться в небольшие структуры.

You'll always find exciting science n Cell !

Переводить ещё Cell Picture Show?
Нормально, переводи ещё
64(62,75%)
Ты мудак, не переводи больше
1(0,98%)
Нормально, не переводи больше
2(1,96%)
Ты мудак, переводи ещё
26(25,49%)
Узнать ответы
9(8,82%)

Биологи выяснили, как тихоходки выживают в экстремальных условиях

Долгое время для исследователей оставалось загадкой, как именно тихоходки запускают анабиоз, при котором их тело высыхает и выглядит словно безжизненный шар. В таком состоянии эти животные могут переносить холод, голод, засуху на протяжении нескольких лет. К ответу на вопрос приблизились американские биологи.
,биология,наука,тихоходка,анабиоз,Реактор познавательный
Тихоходка под микроскопом
Тихоходки (Tardigrada) — восьминогие микроскопические беспозвоночные, которых еще называют «маленькими водяными медведями» из-за их ног, отдаленно напоминающих лапы медведя. Тихоходок по праву можно назвать самыми живучими существами на земле: считается, что они способны пережить любой апокалипсис.
Эти животные десятилетиями могут находиться под водой, выдерживать температуры ниже минус 200 градусов Цельсия и на протяжении нескольких лет жить в жидком кислороде при минус 193 градусах. Также тихоходка годами способна существовать без еды, воды и кислорода, вполне комфортно чувствует себя в открытом космосе и хорошо переносит воздействие радиации.
В экстремальных условиях у тихоходок повышается уровень стресса, и они переходят в состояние анабиоза, при котором втягивают свои конечности, резко сокращают запасы воды. Тело высыхает и выглядит как безжизненный шар (или тун — так называют шарообразную форму тихоходок в анабиозе). Во время глубокой спячки метаболизм тихоходок замедляется до 0,01 процента от его нормальной скорости. Такое состояния значительно повышает шансы на выживание.
Тихоходка в анабиозе
Пока тихоходки находятся в анабиозе, их легко переносят ветер и вода. Когда животные попадают в благоприятные условия, уровень стресса возвращается к норме, и они «оживают». Важно отметить, что эти существа не процветают в экстремальных условиях, а просто их переживают.
Ученые давно пытаются понять, какие именно механизмы отвечают за состояние «туна», то есть за превращение тела тихоходок в «безжизненный шар». К ответу приблизилась группа американских исследователей из Университета Маршалла и Университета Северной Каролины в Чапел-Хилле. Результаты работы опубликованы в журнале PLoS One.
Чтобы вызвать у тихоходок «тун», биологи подвергли животных воздействию высоких концентраций перекиси водорода, сахара и соли при температуре минус 80 градусов. В эксперименте использовали вид тихоходок Hypsibius exemplaris, который выращивали в лаборатории в одно- и двухлитровых колбах на протяжении нескольких недель. Затем их переносили в чашки Петри, где испытывали и изучали с помощью микроскопов и масс-спектрометрии, позволяющей исследовать и анализировать вещества.
Ученые обнаружили, что когда у тихоходок повышался уровень стресса, они вырабатывали высокореактивные молекулы — внутриклеточные активные формы кислорода (свободные радикалы). Затем эти свободные радикалы вступали в реакцию с другими молекулами и окисляли аминокислоту под названием цистеин — важный компонент многих белков и ферментов. Такие реакции заставляли белки менять свою структуру и функции, «оповещая» организм о наступлении анабиоза.
,биология,наука,тихоходка,анабиоз,Реактор познавательный
Также тихоходка, снимок сделан с помощью растрового электронного микроскопа
Когда же исследователи подавляли высвобождение высокореактивных молекул с помощью антиоксидантов, то есть не допускали окисления цистеина, тихоходки не могли больше испытывать стресс, а значит, и перейти в состояние «туна».
«У тихоходок цистеин работает как своего рода регулирующий датчик. Он позволяет этим животным чувствовать окружающую среду и реагировать на стресс», — пояснила Лесли Хикс (Leslie Hicks), участвовавшая в исследовании.
Авторы научной работы отметили, что их открытие хотя полностью и не раскрывает всех механизмов, позволяющих тихоходкам превращаться в «безжизненный шар», значительно приближает к ответу на этот вопрос.
В новых исследованиях ученые хотят выяснить, можно ли считать окисление цистеина универсальным механизмом защиты у всех видов тихоходок. Биологи уверены, что их данные помогут коллегам в будущем лучше понять процессы старения и даже то, как сделать долгосрочные космические путешествия безопасными для человека.
Статья спизжена отсюда

Отличный комментарий!

Шутка уже протухла, но пусть будет

Стартап Orchid выбирает эмбрионов с лучшими генами для ЭКО

Стартап 29-летней выпускницы Стэнфорда Нур Сиддики проводит полное секвенирование генома эмбрионов-кандидатов на процедуру ЭКО, а затем вычисляет вероятность для будущего ребенка заболеть одним из более, чем 1200 заболеваний, в которых ту или иную степень влияния оказывают гены, включая аномалии развития нервной системы, предрасположенность к раку, диабету, шизофрении и др. И выбирает лучших.
Такие процедуры уже какое-то время существуют в репродуктивных клиниках, но они секвенируют всего 0,25% всего генома, тогда как Orchid читает почти 99%. Цена вопроса - 2500 долларов за один эмбрион.
ЭКО происходит так. Пациентка проходит двухнедельный курс гормональной терапии, затем из нее извлекают яйцеклетки. Их оплодотворяют, затем эмбрионы проводят в инкубаторе несколько дней, в этот период и проводят генетические тесты, после чего они помещаются в матку пациентки.
У Orchid всего 16 сотрудников, но они уже представлены в 40 репродуктивных клиниках по всей стране и имеют тысячи клиентов, включая, по слухам, несколько известных имен из тех-индустрии.
Во время интервью Wired журналист задал Сиддики вопрос:
Представьте, что если бы подобная технология существовала раньше, и ваши бабушка и дедушка воспользовались ей, т. к. не хотели, чтобы их ребенок страдал от заболевания глаз, ваша мама бы не родилась и вы, соответственно, тоже. Думаете, это справедливо?
Ну и дальше следует диалог типа:
- Я не удаляю свою мамку.
- Но типа как бы задним числом существует мир где ты ее типа стерла.
- У меня была бы мамка, но она бы не страдала.
- Ты бы не увидела, как она страдает, потому что не существовала бы.
- Это была бы другая я.
- Но ведь именно страдания твоей мамки побудили тебя попытаться улучшить мир.
И т. д.
Это не единственный раз когда вокруг стартапа велись этические дискуссии, его уже сравнивали с Гаттакой и Дивным новым миром.
Нужны ли будущему миру подобные услуги, не смотря на все этические аспекты?
Да
1705(87,89%)
Нет
235(12,11%)

Отличный комментарий!

звучит как очередное наебалово

Не имеющие мозга медузы оказались способны учиться на своих ошибках

Международная команда ученых пришла к выводу, что кубомедузы, у которых отсутствует мозг, способны к ассоциативному обучению. Это означает, что сложные нейронные процессы свойственны даже самым примитивным нервным системам.
,биология,наука,обучение,медуза,Реактор познавательный
Кубомедуза Tripedalia cystophora
Ассоциативное обучение — процесс, посредством которого организмы получают информацию об отношениях между событиями или объектами в их среде. Он выражается в изменении существующих моделей поведения или развитии новых моделей — тех, что отражают признание непредвиденных обстоятельств. Поэтому ассоциативное обучение связано со способностью учиться на собственных ошибках.
У медуз нет централизованной нервной системы управления телом, нет мозга как органа принятия решений в прямом их понимании. Такие животные обычно склонны лишь к простому обучению: они вырабатывают привычку к повторяющимся стимулам или усиливают реакцию на них. Но оказалось, что все не так просто: медузы показали себя куда более продвинутыми существами, чем считалось.
Исследователи из Кильского (Германия) и Копенгагенского (Дания) университетов обратили внимание на кубомедузу Tripedalia cystophora, обитающую в Карибском море. Эти мелкие существа питаются рачками, живущими в мангровых зарослях, из-за чего им приходится маневрировать между мириадом корней и не повреждать о сучья свои нежные тела.
Считается, что кубомедузы определяют расстояние до препятствий путем оценки контраста между корнями и окружающей средой при помощи 24 глаз и скоплений нейронов. При этом степень мутности воды в зарослях бывает разной.
Чтобы выяснить, как медузы подстраиваются под меняющуюся среду, ученые провели серию экспериментов. Для начала они поместили стрекающих в резервуар с водой, на стенках которого были нарисованы полосы — они имитировали корни мангровых деревьев. Контрастность этих полос менялась от одного теста к другому. Ученые выяснили, что при высокой контрастности медузы не подплывали к стенкам сосуда слишком близко, а при низкой, наоборот, натыкались на них. Но спустя несколько минут частота столкновений снизилась в два раза. Это означает, что T. сystophora попросту научились избегать препятствий.
,биология,наука,обучение,медуза,Реактор познавательный
До обучения и после обучения
Авторы исследования предположили, что стрекательные извлекают опыт из своих ошибок, запоминая случаи, когда они натыкались на стенку резервуара, а потом меняют свое поведение. Это означает, что кубомедузы способны к ассоциативному обучению.
Чтобы проверить полученные результаты, ученые даже били несчастных стрекательных током — показывали медузам полоски «корней» разного контраста и одновременно стимулировали их нейроны электрическими разрядами (этим имитировали столкновения с препятствием). Что в итоге? Нейроны медуз стали чувствительны даже к полосам с низкой контрастностью.
На основе этого ученые допустили, что любые нервные системы, даже самые простые, способны к ассоциативному обучению. Свои выводы они представили в журнале Current Biology.
Статья спизжена отсюда

Отличный комментарий!

Не имеющие мозга медузы оказались способны учиться на своих ошибках, а ты нет

Живые мышиные эмбрионы - из клеток кожи.

Израильские ученые вырастили в инкубаторе эмбрионы мышей с мозгом и бьющимся сердцем без использования яйцеклеток и сперматозоидов.
Исследователи использовали стволовые клетки кожи мышей. Это первый раз, когда развитый эмбрион любого вида был создан с использованием только стволовых клеток. Прошлые попытки доходили только то стадии бластоцисты, сейчас же эмбрионы выросли до более, чем миллиона клеток, за восемь дней.
Ключом к достижению стали специальные инкубаторы, в которых каждый эмбрион содержится в сосуде с жидкостью, которые вращаются так, чтобы эмбрион не касался стенок. Инкубатор создает все необходимые условия, включая концентрацию кислорода, давление и температуру. Жидкость, разработанная в лаборатории, снабжает эмбрионы питательными веществами и гормонами.
Gas Mixing Chamber
av 5 sEmbrvo,наука,биология,мыши,эмбрионы,стволовые клетки
,наука,биология,мыши,эмбрионы,стволовые клетки
eurai tuoe


Y
V
^
Beatina heart
Ji
jL
A synthetic mouse embryo grown at Weizmann Institute of Science on day eight, complete with a beating heart, (courtesy, the Weizmann Institute of Science),наука,биология,мыши,эмбрионы,стволовые клетки
Джейкоб Ханна, автор исследования, считает, что однажды технология может быть использована для выращивания человеческих эмбрионоподобных структур, чтобы получать клетки для проведения футуристических медицинских процедур. Вы отдаете клетки кожи или крови, из них выращиваются искусственные эмбрионы, которые производят клетки для выращивания органов, которые потом трансплантируют вам.
https://www.timesofisrael.com/from-just-skin-cells-israeli-lab-makes-synthetic-mouse-embryos-with-beating-hearts/

Отличный комментарий!

"Джейкоб Ханна, автор исследования, считает, что однажды технология может быть использована для выращивания человеческих эмбрионоподобных структур, чтобы получать клетки для проведения футуристических медицинских процедур." Ну что посоны?
EWAN MCGREGOR
SCARLETT JOHANSSON
ISLAND,наука,биология,мыши,эмбрионы,стволовые клетки

Ученые нашли способ восстанавливать хрящи в суставах.


,Живи вечно или умри пытаясь,биология,медицина


Наша хрящевая ткань имеет очень ограниченную способность к восстановлению, да и та теряется с возрастом. Поэтому чем дальше, тем хрящи больше изнашиваются и однажды истончаются настолько, что в суставе кость начинает тереться о кость. Это вызывает боль, воспаления и все остальные негативные эффекты пожилого возраста.

Ученым уже был известен способ восстановления хрящевой ткани, называющийся микроповреждениями. В хряще просверливалось множество маленьких отверстий, это заставляло тело производить новую хрящевую ткань, но она отличалась от "настоящей" примерно как шрамы отличаются от окружающей кожи. Она не обладает гибкостью, упругостью и нужной степенью скольжения.

Теперь к этому способу добавили еще и скелетные стволовые клетки. Такая клетка, прежде чем превратиться в костную ткань, проходит через стадию хряща, и исследователи нашли способ остановить развитие клеток на этой стадии с помощью костного морфогенетического белка. В итоге получилась новая хрящевая ткань, ничем не отличающаяся от оригинальной.

Сначала исследователи опробовали способ на обычных мышах, потом - на специальных мышах, которым была пересажена человеческая хрящевая ткань. На очереди более крупные животные, ну и потом человек.

Отличный комментарий!

		
! 1 1 Г LJ	i 1 î]	1 i \,Живи вечно или умри пытаясь,биология,медицина

Геном саламандр хранит секреты отращивания конечностей.


Аксолотли - одни из очень немногих видов высших животных, обладающих очень сильной способностью к регенерации. Они могут неоднократно отращивать утраченные конечности, восстанавливать сильно поврежденные внутренние органы, восстанавливать повреждения позвоночника и даже отрастить обратно кусок переднего мозга размерами 1 на 2 миллиметра.


В противоположность аксолотлям, млекопитающие, включая и людей, к регенерации способны очень мало. Максимум, доступный человеку, - отрастить кончик пальца, да и то в раннем детстве.

Аксолотль был лабораторным животным уже очень давно, первые работы по ним были опубликованы 250 лет назад. Аксолотли хорошо размножаются в неволе и с тех пор многие исследователи по всему миру используют в своих опытах особей, которые являются потомками 34 аксолотлей, доставленных в 1860-х годах из Мексики в Париж.

Несмотря на такую долгую историю, геном аксолотля был полностью прочитан лишь совсем недавно. Статья об этом вышла в Nature в феврале этого года.

Теперь у исследователей появился мощный инструмент для изучения необычайных способностей аксолотлей к регенерации. Многие считают, что у млекопитающих есть те же самые способности, но они были выключены или подавлены в ходе эволюции. Возможно, в качестве защиты от роста опухолей.

Уже сейчас исследуются возможности применения знаний об аксолотлях к людям. Одни изучают сетчатку аксолотлей для улучшения терапии глаз пожилых людей стволовыми клетками; другие исследуют белки, участвующие в регенерации конечностей саламандр, чтобы иметь возможность предсказать, как человек будет восстанавливаться после травмы конечности; третьи исследуют способы, которыми ткань в отрастающей конечности контролирует клетки - возможно, то же самое можно будет сделать с раковыми клетками.

Это еще только начало пути, но исследователи верят, что когда-нибудь отращивать конечности смогут и люди.

Краткий пересказ соуса

Терапия зла. Как технологии лечения митохондриальных болезней 24 года идут к легализации.

Torsten Wittmann, University of California, San Francisco / NIH / flickr CC BY-NC 2.0

Некоторые генетические болезни мы могли бы лечить еще 20 лет назад — методом пересадки митохондрий. Но реальные попытки его применить закончились обвинениями ученых в евгенике, скандалами и запретами, а митохондриальные болезни так и остались неизлечимыми. С тех пор биотехнология шагнула вперед, у нас появились системы редактирования генома и первые пациенты, чьи гены удалось переписать. Время совершить очередной подход к митохондриальным генам. Сможем ли мы на этот раз обойтись без скандалов?

Первые шаги

Когда в августе 1996 года врачи из клиники в Нью-Джерси ввели сперматозоиды мистера Отта в 14 яйцеклеток миссис Отт, никто еще не знал, какая из них превратится в маленькую Эмму и чем закончится эта история для пациентов с митохондриальными болезнями. Тогда супружеская пара Оттов готова была на любые риски после 6,5 лет тщетных попыток зачать ребенка, а доктор Жак Коэн надеялся на успех своей новой методики. Суть ее была проста: в процессе искусственного оплодотворения в яйцеклетку матери врачи ввели не только сперматозоид отца, но и десятую часть цитоплазмы из яйцеклетки молодой женщины-донора.

Из 14 яйцеклеток, оплодотворенных таким образом, шесть начали развиваться нормально, четыре подсадили в организм матери, одна прижилась, выросла в Эмму Отт и родилась в срок без осложнений. Коэн с коллегами отчитались в журнале The Lancet о том, что им успешно удалось восстановить фертильность 39-летней женщины, предыдущие зародыши которой развивались неправильно. Нью-Йоркские газеты вовсю рекламировали их успехи. Десятки бесплодных супружеских пар обращались в клинику за помощью, и за следующие четыре года на свет появились еще 16 подтверждений того, что методика работает.

А потом грянул гром.

Коэн и коллеги продолжали совершенствовать свою методику и следить за результатами. В 2000 году они обнаружили, что в разных зародышевых тканях и клетках новорожденных, которые появились на свет в результате пересадки цитоплазмы, остались следы донорских генов.

Эмбрионы на третий день после оплодотворения. (a) яйцеклетка матери + сперматозоид отца; (b) яйцеклетка матери + сперматозоид донора; (c) яйцеклетка донора + сперматозоид отца, (d) яйцеклетка матери + сперматозоид отца и инъекция ооплазмы донора
Carol Brenner et al. / Fertility and Sterility, 2000

Возможно, это наблюдение и прошло бы незаметно, если бы в 2001 году они не опубликовали еще один короткий отчет, посвященный долгосрочным наблюдениям за детьми. На этот раз они нашли следы донорских генов в крови и слизистой щеки у двух годовалых младенцев и честно объявили: «это первый случай наследуемой генетической модификации» — чем и загубили все дело.

Фраза продолжалась словами «... которая привела к рождению нормальных здоровых детей», но это уже никого не волновало.

СМИ бросились обсуждать «первых в мире ГМ-детей» и говорить о возвращении евгеники. FDA, американский аналог Росздравнадзора, потребовало от репродуктивных клиник считать использование донорских яйцеклеток экспериментальной процедурой и получать на них специальное разрешение. Возведя «бумажную стену», бюрократия обуздала технологию и фактически похоронила спорный метод.

Чужой внутри

Сам же Коэн не ставил своей целью создание генетически модифицированных людей и даже не признавал свой метод модификацией — все гены ребенка остались на месте и никак не изменились. Он просто считал, что причина бесплодия кроется в постаревших яйцеклетках женщин и искал способ их омолодить. Более того, врачи из его команды специально следили, чтобы в микрокапилляр (с помощью которого в яйцеклетку вводили сперматозоид и донорскую цитоплазму) не попали чужие хромосомы — от донора им нужна была только цитоплазма, и ее забирали с той стороны яйцеклетки, где не было генетического материала. С этой частью процедуры они справились успешно: в крови детей никаких чужеродных ядерных генов впоследствии не обнаружили.

,наука,n+1,биология,длинопост

Инъекция сперматозоида в яйцеклетку
СС0

Однако вместе с донорской цитоплазмой в зародыш могли попасть и другие части яйцеклетки, в том числе, митохондрии. Сами по себе они могут быть даже полезны: добавочные митохондрии могут снабдить развивающуюся яйцеклетку дополнительной энергией.

У митохондрий внутри есть собственный геном. Именно его и нашел Коэн в клетках детей, что побудило его использовать столь напугавшее приличную общественность словосочетание «генетическая модификация».

Гетероплазмия — соседство нескольких типов митохондрий в одной клетке — сама по себе не влияет на внутриклеточную жизнь. Более того, она естественным образом появляется в стареющих клетках человека, по мере того как митохондрии накапливают мутации. Поэтому нет никаких причин думать, что чужая митохондриальная ДНК могла повлиять на судьбу и развитие детей. В 2016 году Коэн и коллеги отчитались о здоровье уже выросших «экспериментов»: никаких серьезных аномалий развития, никаких тяжелых болезней, хорошие оценки в школе.

,наука,n+1,биология,длинопост

(a) Яйцеклетки через 10 минут после инъекции донорской ооплазмы (красная) (b) Трипронуклеарные зиготы через 24 часа после инъекции донорской ооплазмы. По мнению ученых, красные точки это именно митохондрии
Jason A. Barritt et al. / Human Reproduction, 2001

Но научное сообщество волновало не только здоровье детей. Гораздо более важным аргументом стал тот факт, что часть этих детей — в том числе и «первенец» Коэна Эмма Отт — девочки, а значит, могут передать свой необычный митохондриальный состав по наследству, положив начало клану «неестественно» гетероплазмичных людей.

С тех пор появились свидетельства того, что гетероплазмия в клеточных культурах бывает обратимой, и пришлые митохондрии на чужбине постепенно вымирают. Но многие участники исследований Коэна отказались проверять кровь своих взрослых детей на гетероплазмию, и мы едва ли теперь узнаем, насколько состоятельны были опасения FDA. Запрет регулятора остается в силе по сей день, и ученым пришлось искать обходные пути к лечению бесплодия.

Вторая мать

Коэн так и не смог сказать наверняка, какая именно часть донорской цитоплазмы если не омолодила яйцеклетки, то хотя бы помогла женщинам забеременеть. Это могли быть не только органеллы, но и какие-нибудь отдельные молекулы из молодой цитоплазмы, например, белки или информационные РНК. Тем не менее, работа ученого создала важный прецедент: для создания ребенка можно использовать донорский материал третьего человека. И как только его эксперименты заглохли под пристальным взглядом FDA, дальнейший прогресс переехал в Китай.

Вскоре после того, как FDA изменили правила игры, конкуренты Коэна перенесли свои эксперименты из Нью-Йорка в Гуанчжоу, где никаких запретов еще не существовало. Там молодому эмбриологу Джону Чжану пришло в голову сделать все наоборот: если можно пересадить участок цитоплазмы из молодой яйцеклетки в старую, то почему бы не попробовать сделать наоборот — пересадить ядро старой яйцеклетки в молодую? Технологию переноса ядер (позже ее назвали переносом пронуклеусов) он опробовал в 2003-м: оплодотворил старую (материнскую) и молодую (донорскую) яйцеклетки, затем из второй удалил ядро и пересадил туда ядро первой.

а
Яйцеклетка матери
Митохондрия
Веретено^Ц деления
Полярное
тельце
Яйцеклетка
донора
Яйцеклетка донора без ядра
Сперма
Оплодотворение
Пронуклеусы
Пронуклеарная Развитие стадия
Развитие
Яйцеклетка
донора
Зигота
донора
Зигота донора без ядра,наука,n+1,биология,длинопост

(a) Перенос веретена (мексиканский эксперимент Чжана) (b) Перенос пронуклеусов (китайский эксперимент Чжана))
Steve Connor / Nature, 2017

Насколько эксперимент оказался успешным, сказать сложно. В культуре начали развиваться сразу пять эмбрионов, которые и перенесли пациентке. Из них прижились сразу три. Ученые решили, что это опасно, и вызвали аборт одного из зародышей, а остальные два позже погибли сами. Поэтому Чжан, в отличие от Коэна, не смог доказать, что его методика безопасна. Эксперименты снова запретили — на этот раз уже китайские регуляторные органы, мотивируя это подозрительной близостью исследований к попыткам клонировать человека (а вот оно в Китае запрещено).

Но история, естественно, на этом не закончилась: эту спорную терапию бесплодия (перенос пронуклеусов) продолжают использовать и сейчас. В 2016 году ее начали применять в Украине, в 2019 первый такой ребенок появился в Греции.

Смена курса

Те же, кто не верил в то, что митохондрии могут «омолодить» яйцеклетку, наметили еще один потенциальный выхлоп из этого метода. Перенос пронуклеусов мог бы стать избавлением от мутаций в митохондриальных генах. Довольно часто такие мутации делают своих носителей инвалидами в раннем возрасте: поскольку митохондрии поставляют в клетки энергию, страдают чаще всего главные ее потребители — мышцы и нервы. Носительница таких мутаций не может зачать здоровых детей естественным путем, так как с митохондриями отец помочь никак не может: их ребенок наследует строго от матери.

Таким образом, перенос пронуклеусов можно было использовать как терапию митохондриальных болезней. На это обратили внимание сразу несколько исследовательских групп. Американский биолог русского происхождения Шухрат Миталипов, известный как пионер редактирования генома человека, еще в 2013 году основал компанию Mitogenome therapeutics и начал проверять методику на макаках. Профессор Мэри Герберт из британского Ньюкасла добилась разрешения провести первую такую процедуру в 2017 году. Но Джон Чжан, потерпев фиаско в Китае с починкой бесплодия, все-таки успел быстрее всех.

,наука,n+1,биология,длинопост

Джон Чжан с первым ребенком от трех родителей
New Hope Fertility Center

Первый «его» ребенок появился на свет в Мексике в 2016 году, где власти регулированием деторождения не столь озабочены. Родители мальчика были мусульманами, и классический метод переноса пронуклеусов для них был невозможен — для этого пришлось бы разрушить оплодотворенную яйцеклетку донора, то есть убить зародыш, что религиозные нормы родителей не позволяли. Поэтому Чжан использовал альтернативный метод — перенос веретена, то есть сначала пересадил генетический материал матери в донорскую яйцеклетку (без ядра), а затем устроил ей «свидание» со сперматозоидом отца. Но и такой трюк не пришелся мировой общественности по вкусу. Родившегося мальчика окрестили «ребенком от трех родителей», и начался новый скандал.

Двери закрываются

Одни ученые обвинили Чжана в экспериментах на живых людях, другие предложили проводить подобные испытания только на эмбрионах мужского пола, которые заведомо не передадут «результат» эксперимента потомству. Третьи задались вопросом: есть ли у Чжана доказательства того, что у ребенка не возникнет гетероплазмии или даже отката к изначальному состоянию? Доказательств у Чжана не было: родители забрали ребенка и отказались от долгосрочного наблюдения.

Итог скандала был предсказуем: FDA укрепило возведенную прежде «бумажную стену» и запретило любые манипуляции по замещению митохондрий. Великобритания осталась единственной страной, где они сейчас официально одобрены — в редких случаях и после долгих обсуждений наверху, в кабинетах Управления по оплодотворению человека и эмбриологии. Всем остальным желающим экспериментировать с яйцеклетками и их митохондриями приходится искать себе страну, где законодательство никак эту методику не регулирует, и не слишком сильно афишировать свои исследования.

Митохондриальные болезни могли бы стать первыми генетическими болезнями, которые люди научились лечить массово — но не стали. К методике митохондриального переноса прочно приклеилось название «ребенок от трех родителей», и несмотря на то, что сами исследователи считают его некорректным — донорских генов всего 37, а от отца и матери их по 20 тысяч — оно теперь устойчиво ассоциируется с нарушением этических норм. Поэтому, чтобы решить проблему бесплодия или избавить своего ребенка от риска стать обладателем целого букета неизлечимых болезней, родителям приходится отправляться в «эмбриологические турне», иногда на другой край света.

ЭМ-снимок митохондрии. Черные точки близко к поверхности мембраны — это мтДНК, помеченная частицами золота
Francisco J Iborra et al. / BMC Biology, 2004 / CC BY 2.0

А потом появился способ вылечить генетические болезни, скрытые уже не в органеллах клетки, а прямо в ее ядре. Несмотря на то, что люди, которые первыми придумали применять CRISPR/Cas9 к человеческим генам, заранее предупреждали, что система к этому еще не готова, история повторилась. Воспользовавшись тем, что китайское законодательство закрыло калитку для манипуляций митохондриями, но ничего не сказало о редактировании генов, очередной первопроходец Цзянькуй Хэ опробовал CRISPR на эмбрионах. Дальше случилось то же, что и всегда: скандал, запреты, попытки не допустить повторения ситуации с «детьми от трех родителей» (впрочем, ВОЗ вот уже год с небольшим работает над стандартами надзора за манипуляциями с человеческим геномом, и упорно избегает слова «мораторий»; тем временем во многих странах официального запрета на CRISPR-детей нет до сих пор).

Но поскольку лечить генетические болезни все-таки нужно, появился компромиссный вариант — CRISPR-терапия. Иными словами, пока мир разбирается с тем, имеем ли мы право редактировать эмбрионов, можно тренироваться на взрослых: вводить им в кровь систему редактирования и чинить поломки прямо в работающих тканях. Этот метод уже отработали на самых разных клетках, и недавно перешли к испытаниям in vivo.

По мере того, как CRISPR отвоевывал себе одну терапевтическую область за другой, стало понятно, что против митохондриальных мутаций он бессилен. Дело в том, что большинство систем генетического редактирования работают, как ножницы, разрезая ДНК в условленном месте. И если ядерную ДНК после такого клетка легко восстанавливает, соединяя концы разрыва, то митохондриальную разрушает — в норме она свернута в кольцо, так что двунитевой разрыв считается не рядовой поломкой, а признаком серьезной проблемы. Поэтому потери от такого редактирования могут превысить выигрыш.

Так митохондриальные болезни не только не стали первым достижением генетической терапии, но и вовсе остались последним не взятым бастионом.

Параллельные дороги

Справедливости ради стоит сказать, что модификация эмбрионов — не единственный способ справиться с митохондриальными дефектами. Например, митохондрии можно пересаживать не в яйцеклетку, а в уже родившийся организм (подобно тому как сейчас вводят CRISPR/Cas).

Сейчас клинические испытания проходят две терапии такого рода. В рамках первой — наращивания митохондрий (mitochondrial augmentation therapy) — ребенок получает донорские митохондрии от матери (в случае, если его митохондриальная болезнь возникла с нуля, а не досталась от матери). У ребенка забирают клетки — например, стволовые клетки крови — и культивируют их вместе с митохондриями, выделенными из клеток матери. Считается, что при этом клетки крови ребенка поглощают материнские органеллы, становятся более жизнеспособными и будут активно размножаться после возвращения в организм, таким образом поддерживая работу «сломанных».

Вторая терапия предполагает, что ребенок становится донором митохондрий сам для себя — например, в случае ишемии сердца при родах или в первые часы жизни. Тогда из какой-нибудь скелетной мышцы вырезают кусочек ткани, выделяют оттуда митохондрии и вводят их в сердечную мышцу. Этот метод недавно опробовали на пяти новорожденных: двоих из них спасти не удалось, а еще трое выздоровели, но неизвестно, какую роль в этом сыграла митохондриальная аутотрансплантация.

Можно представить себе, что комбинация этих двух методов могла бы породить полноценную терапию, в ходе которой донорские митохондрии вводили бы в кровь пациента, а они заселяли бы поврежденные митохондриальной болезнью ткани. Однако у научного сообщества остается немало вопросов к этим процедурам. Несмотря на то, что отдельные митохондрии действительно могут выжить в плазме крови, неизвестно, способны ли клетки тела их захватывать, а если да, то выживают ли они внутри. Защитники метода отмечают, что «иногда необходимо принять технологию, даже если мы не знаем, как она работает».

Есть и более радикальные решения митохондриальных проблем: так, еще несколько лет назад самый знаменитый борец со старением Обри ди Грей предложил перенести все гены из митохондрии в ядро. Два из них его коллегам удалось переместить и показать, что даже оттуда они успешно справлялись со своими обязанностями.

И хотя этот проект кажется еще менее реалистичным, чем все прочие, может оказаться, что некоторые митохондриальные гены можно пересаживать по отдельности — подобно тому как с мутациями в ядерной ДНК пытаются справиться с помощью генной терапии. Такие работы тоже есть, есть и первые клинические испытания — так пытаются лечить наследственную оптическую нейропатию. Хитрость здесь в том, что генная терапия доставляет митохондриальный ген не в митохондрию, а в ядро. Тем не менее, можно так сконструировать искусственный ген, чтобы получившийся продукт клетка транспортировала в митохондрию, и тогда неважно, где он производится.

Новая тропа

И все же гораздо надежнее было бы переписать мутантный митохондриальный ген раз и навсегда. Этой задачей занялся Дэвид Лю, один из главных специалистов в мире по редактированию генома. Именно он в 2016 году придумал, как исправлять мутации, не разрезая ДНК, — и собрал редактор оснований (base editor). Это молекулярная система из двух ферментов: dCas9, который наводится на конкретное место в ДНК, и дезаминазы, что исправляет один нуклеотид на другой, буквально переписывая «генетический текст» наживую.

Для митохондрий и этот метод не годится. Редакторы оснований напрямую зависят от направляющей РНК, которая доставляет их к цели: потом Cas расплетает спираль ДНК на две отдельные нити, с одной связывается РНК, а другую атакует дезаминаза. Но направляющая РНК не может проникнуть внутрь митохондрии — не хватает транспортной системы, которая бы протаскивала ее сквозь две мембраны . Нужно было придумать какую-то систему, которая работает без РНК. Недавно команда Лю создала такую систему. И работает она еще и без Cas.

Система построена на основе антибиотика DddA, который выделяет бактерия Burkholderia cenocepacia. У него есть две важные особенности: во-первых, он действует точечно: исправляет в целевом гене все С (цитозиновые нуклеотиды) на А (адениновые) — точнее, сначала, переводит С в U (урацил), а клетка превращает их в А — то есть работает дезаминазой. Во-вторых, в отличие от всех других редакторов оснований, он связывается с двухцепочечной ДНК — а значит, нет необходимости ее разделять на две нити с помощью направляющей РНК, которая не пролезает в митохондрии.

Но просто так без направляющей РНК все равно не обойтись — необходим какой-то другой механизм, чтобы нацелить DddA на нужное место в митохондриальном геноме. И здесь команда Лю сделала шаг назад и воспользовалась технологией, которая, казалось бы, давно уступила место CRISPR — TALEN. Это бактериальные ферменты-конструкторы: они построены из доменов, каждый из которых распознает определенную последовательность ДНК. Подбирая нужный комплект доменов, можно добиться того, чтобы фермент садился на конкретное место в геноме. Эта технология, которая давно считается более сложной и дорогой, теперь может закрыть ту нишу, которая CRISPR оказалась не по зубам.

Соединив подобранный TALEN с нетоксичной частью DddA (той, что способна только дезаминировать ДНК, а не распознавать ее участки), команда Лю получила заветный инструмент. Правда, для клинического применения он еще сыроват: в разных экспериментах он смог переписать не больше половины своих мишеней в клетках. Тем не менее, он проникает в митохондрии и не разрушает их изнутри, и это гораздо важнее, чем эффективность, которую несложно нарастить.

И если это удастся сделать, то мы сможем считать, что в организме человека больше нет такого гена, который мы не в силах изменить. Не останется ни единого участка ДНК, который будет нам неподвластен.

Инструмент Лю не требует никакого «третьего родителя», а его работа даже отдаленно не напоминает клонирование. А значит, шансы на то, чтобы оказаться не задевающим ничьи чувства и не вызывающим оправданные опасения, у него выше. Но каков будет следующий поворот этого сюжета? Вариантов два: долгие и тщательные испытания и постепенное применение нового редактора на взрослых людях (как происходит, например, с генной терапией) или авантюра с участием эмбрионов и попытки очередного первопроходца опередить свое время (так было с митохондриальной трансплантацией, так было с CRISPR и как, возможно, будет еще не раз). До клиники митохондриальному редактору еще далеко. Но делать ставки на то, какая судьба его ждет через несколько лет, можно уже сейчас: будет ли это очередной скандал, запрет и поиск новой дороги — или же в конце этой истории все-таки можно будет поставить, наконец, точку вместо вопросительного знака?

Автор статьи:Полина Лосева
Поперечный срез берцовой кости человека. Окраска тионин-пикриновой кислотой
Здесь мы собираем самые интересные картинки, арты, комиксы, мемасики по теме всё о белках биология (+1000 постов - всё о белках биология)