заметил тут что уже несколько человек посвятило пост новому ивенту, кто-то даже посвятил пост вычислению верного ответа.
я хочу сказать что всё уже было и лучший вариант ответа нашли, просто оставлю это тут
В 2005 году датская газета Politiken предложила своим читателям сыграть в следующую игру: каждый желающий мог прислать в редакцию действительное число от 0 до 100. Тот, чье число оказалось бы ближе всего к 2/3 от среднего арифметического присланных чисел, выигрывал 5000 датских крон (на тот момент около $800).
Данная игра известна в теории игр под названием «угадать 2/3 среднего». Она демонстрирует разницу между абсолютно рациональным поведением и реальными действиями игроков.
Представим себе, что все участники игры действуют полностью рационально и, что не менее важно, знают, что остальные также действуют рационально и не сговариваются друг с другом. Какое же число будет оптимальным в такой ситуации?
Очевидно, что нет смысла называть числа большие чем 66.(6), т.к. среднее арифметическое не может быть больше 100. Но, если все игроки рассуждают подобным образом, то все числа будут не больше чем 66.(6), значит и среднее арифметическое не превысит этого числа, а значит называть больше чем 2/3*66.(6)=44.(4) снова нет смысла. Повторяя данное рассуждение бесконечно много раз, прийдем к выводу, что единственным правильным ходом будет число 0. Таким образом, если все игроки рассуждают рационально, то все они должны выбрать число 0.
Однако в реальной жизни ситуация отличается. Даже если игрок рационален, он знает, что многие из его противников не рациональны, а значит ему придется учитывать, что их числа будут больше 0. Можно предположить, что большинство пришлет более-менее случайные числа, тогда средним будет 50, две трети от 50 приближенно равно 33. Если пойти дальше и предположить, что до числа 33 догадается достаточно много людей, то можно выбрать две трети от 33, т.е. 22. Дальнейшие итерации дадут ~15, ~10 и т.д., но кажется маловероятным, что так далеко будет просчитывать достаточно существенное число игроков.
Вернемся к началу статьи. Какое же число выиграло в Дании? Ниже вы видите гистограмму игры, в которой приняло участие 19196 человек.
Первое что бросается в глаза — ожидаемые пики в точках 22 и 33. Выигрышное число оказалось немногим меньше чем 22, скорее всего в результате того, что большинство участников поняли бессмысленность выбора чисел больше 66.(6). Любопытно, что нашлись те, кто прислал 67 и больше, включая 100. Интересно, они сделали это не стремясь выиграть или просто не понимали бесполезность такого хода? Еще интересно, руководствовались ли абсолютно рациональными рассуждениями те, кто прислали 0, или просто выбирали круглое число?
Еще один любопытный момент: если в условии задачи ограничить выбор только целыми числами, то рационально-выигрышных стратегий становится две: 0 и 1. Дело в том, что из-за дискретности целых чисел, умножение на 2/3 не удастся повторить бесконечное число раз. Когда мы дойдем до 1, следующая итерация даст 2/3, но, округляя до целых, мы вновь получим 1.
P.S стащил я это с хабра
Я вот понадеялся, что многие так посчитают.
а я подумал уже после того как вписал ответ)
Я подумал, что большинство не станет считать и решил рискнуть поставить 33. На деле между 22 и 33, я уверен.
вы видите гистограмму? я - нет
Немного умозаключений и занудства.
С ходу отбрасываем то, что в игре принимают участие рациональные люди. Поэтому распределение присланных ответов будет непрерывно-равномерным. Иными словами, математическое ожидание количества возникновения любого числа, в присланных ответах, будет одинаковым.
Что ж, возьмем 100 участников и исходя из наших умозаключений, просуммируем все цифры от 0 до 100, ибо каждая цифра возникнет как минимум один раз. Для 200 – 2 раза и т. д. В нашем случае вполне достаточно 100. Суммировать будет следующим образом:
100+1 =101
99+2 =101
…
50+51 =101
и таких пар 50. 101*50=5050 . Разделим на 100 и получим среднее арифметическое 50,5.
2/3 от 50,5 -> 33,6
Если же принять то, что подопытные кролики рациональны и никто не будет присылать больше 66, то имея непрерывно-равномерное распределение от 0 до 66 Получим следующий результат.
66+1=67
65+2=67
…
33+34=67
И таких пар 33 а потому 67*33 = 2211. Но так как треть мы отрезали то что бы иметь полностью равномерное распределение от 0 до 60 нам необходима группа из 300 человек. Иными совами каждое число от 0 до 60 возникнет три раза. Поэтому 2211*3 = 6633 и делим на 300 и получаем 22,1
Вот поэтому и будут два пика в районе 33 и 22.
Дальше, конечно, можно усложнять модель вводя нормальное распределение (Распределение Гауса) с пиком в 22 и 33 и считать смещение к корректному результату по дисперсии разброса, но все это мы оставим за скобками и поступим как лентяи. _
Для простоты будем считать, что рациональных людей у нас 15% (взято округленное значение из какойто статьи зарубежных исследований рациональности поведения людей), а не рациональных 85%. Соответственно среднее арифметическое будет (0,85*33+0,15*22)/2 = 17,55.
Буду ждать с нетерпением результатов дабы узнать на сколько я промахнулся.
Кстати, будет интересно провести обратный расчет, исходя из оглашенных результатов, процента рациональных людей, сидящих на сайте.
Ну и в конце гистограмма из вики (https://en.wikipedia.org/wiki/Guess_2/3_of_the_average).
Всем спасибо, кто дочитал до конца.
С ходу отбрасываем то, что в игре принимают участие рациональные люди. Поэтому распределение присланных ответов будет непрерывно-равномерным. Иными словами, математическое ожидание количества возникновения любого числа, в присланных ответах, будет одинаковым.
Что ж, возьмем 100 участников и исходя из наших умозаключений, просуммируем все цифры от 0 до 100, ибо каждая цифра возникнет как минимум один раз. Для 200 – 2 раза и т. д. В нашем случае вполне достаточно 100. Суммировать будет следующим образом:
100+1 =101
99+2 =101
…
50+51 =101
и таких пар 50. 101*50=5050 . Разделим на 100 и получим среднее арифметическое 50,5.
2/3 от 50,5 -> 33,6
Если же принять то, что подопытные кролики рациональны и никто не будет присылать больше 66, то имея непрерывно-равномерное распределение от 0 до 66 Получим следующий результат.
66+1=67
65+2=67
…
33+34=67
И таких пар 33 а потому 67*33 = 2211. Но так как треть мы отрезали то что бы иметь полностью равномерное распределение от 0 до 60 нам необходима группа из 300 человек. Иными совами каждое число от 0 до 60 возникнет три раза. Поэтому 2211*3 = 6633 и делим на 300 и получаем 22,1
Вот поэтому и будут два пика в районе 33 и 22.
Дальше, конечно, можно усложнять модель вводя нормальное распределение (Распределение Гауса) с пиком в 22 и 33 и считать смещение к корректному результату по дисперсии разброса, но все это мы оставим за скобками и поступим как лентяи. _
Для простоты будем считать, что рациональных людей у нас 15% (взято округленное значение из какойто статьи зарубежных исследований рациональности поведения людей), а не рациональных 85%. Соответственно среднее арифметическое будет (0,85*33+0,15*22)/2 = 17,55.
Буду ждать с нетерпением результатов дабы узнать на сколько я промахнулся.
Кстати, будет интересно провести обратный расчет, исходя из оглашенных результатов, процента рациональных людей, сидящих на сайте.
Ну и в конце гистограмма из вики (https://en.wikipedia.org/wiki/Guess_2/3_of_the_average).
Всем спасибо, кто дочитал до конца.
Я выбрала число 17 и взяла округление от него две трети. Получилось 11 :)
> (0,85*33+0,15*22)/2 = 17,55.
Тут на 2 делить не надо, сумма коэффициентов-весов-то равна 1. То есть ответ 31,35.
Тут на 2 делить не надо, сумма коэффициентов-весов-то равна 1. То есть ответ 31,35.
Ты чертовски прав.
Для среднеарифметического двойка лишняя.
Изначально я хотел посчитать медиану выборки, которая равна 27,5 для 33 и 22, но решил что просто медианы недостаточно и пронормировал коэффициенты ...
Видимо в какой-то момент в те же двери постучала мысль о подсчете мат. ожидания (31,35) ...
В 5 часов утра надо было спать, а не писать не пойми что.
Вот теперь "... стыдно смотреть товарищам в лицо."
Спасибо что исправил.
Для среднеарифметического двойка лишняя.
Изначально я хотел посчитать медиану выборки, которая равна 27,5 для 33 и 22, но решил что просто медианы недостаточно и пронормировал коэффициенты ...
Видимо в какой-то момент в те же двери постучала мысль о подсчете мат. ожидания (31,35) ...
В 5 часов утра надо было спать, а не писать не пойми что.
Вот теперь "... стыдно смотреть товарищам в лицо."
Спасибо что исправил.
И я не вижу. А она есть.
Написал "сплит хуесос" (оригинально, знаю) чтобы это окошко отъебалось и не мешало деградировать.
Мог просто закрыть
Всё не так просто, оно вернётся)
Я просто перешёл, в мобильную версию.
Друзья, вы всё ещё уверены, что ивент будет работать по такому принципу? Мне кажется всем забьют хуй, а победит вождь
хуи тут всем нравятся и вождя все любят, так что это то что нужно
Говори за себя, любитель хуёв.
Говори за себя, любитель вождя.
Говори за себя, любитель.
Куда забьют?
В отверстия, а т.к. тян нет, то не в функционально предназначенные для этого
В ушки? =(
И туда могут
ответил 100, чисто чтобы запороть статистику ¯\_(ツ)_/¯
Я с той же целью ввел что-то вроде 9,99 квадриллионов, просто забив все девятками до упора. Ответ скорее всего просто не примут, но вдруг посчитают? Реактор все таки, да и поле не было ограниченно 3 клетками.
А действительно что если система на автомате засчитывает все числа и таким образом ты сломаешь систему
А ведь он ещё и выиграет, если всё пойдёт по плану.
А я ответил 99, потому что мое должно быть самое большое!
Почему тогда не сто?
Обломайся. Я уже ответил 101.
Чертовы экстраверты.. -.-
Если стащил с хабра, то и линку на хабр было бы уместно оставить.
https://habr.com/ru/post/62696/
А вообще еще на вики хорошо написано https://en.wikipedia.org/wiki/Guess_2/3_of_the_average
https://habr.com/ru/post/62696/
А вообще еще на вики хорошо написано https://en.wikipedia.org/wiki/Guess_2/3_of_the_average
> Выигрышное число оказалось немногим меньше чем 22
да, но теперь про ту историю знает какое-то количество людей. Так что следующий пик должен быть ниже.
да, но теперь про ту историю знает какое-то количество людей. Так что следующий пик должен быть ниже.
Я в первый раз нажал крестик, теперь прочитал правильный ответ. Теперь буду нажмать тольуо крестик, ибо нечестно
какой ответ то???
нафига все эти стены текста????
я хочу просто ответ и выиграть миллион, братан, не надо так со мной (
нафига все эти стены текста????
я хочу просто ответ и выиграть миллион, братан, не надо так со мной (
пиши 33
Хм... А на чём реактор работает?(имеется ввиду яп)
На прокрастинации и полиморфизме
Где игра? Какого хуя со мной некто не хочет играть?
на реакторе люди обычно играют сами с собой
написал 50 хмм
такая же херня
100 же, больше лучше.
таки надеюсь, что коэффициент дегроданства джоя подебил
дегрод?сука
Увидел, написал 0 поскольку мне пора в колледж, а не ебатся с числами.
Пту*
Я вроде как 30 ответил. Ну бля, надеюсь больше людей ради лулзов 69 ответили
я так и сделал.
сколько рассуждений, я просто написал длину хера
что-то ты слишком маленькое число взял
Отрицательные числа нельзя вводить
Наугад первое что пришло в голову влепил (33) что бы убрать это окошко, даже не читая условие. Говорите, есть шанс, что я угадал?
Правильный ответ слава вождю
Неправильный
Неправильный, но верный!
42 — ответ на «главный вопрос Жизни, Вселенной и Всего Остального». Именно такой ответ дал афигенно умный ИИ «Deep Thought» в книге Дугласа Адамса «The Hitchhiker's Guide to the Galaxy», поразмыслив над ним семь с половиной миллионов лет и сожрав невообразимое количество ресурсов.
Все остальные ответы свыше 50 Мы продолжаем деградировать нам пох - Если что я с этими ребятами.
Ниже 50 - мы будем считать себя умниками которые ни хера не получат но буду чувствовать себя важными, потому что включили мозги на сайте посвященному деградации - я в вас разочарован - "кожаные ублюдки"
Все остальные ответы свыше 50 Мы продолжаем деградировать нам пох - Если что я с этими ребятами.
Ниже 50 - мы будем считать себя умниками которые ни хера не получат но буду чувствовать себя важными, потому что включили мозги на сайте посвященному деградации - я в вас разочарован - "кожаные ублюдки"
Я написала ниже 50, но просто число, которое мне нравится (ибо считать лень, а угадать - не, моя удача так не прокнет). Так что не всё так однозначно.
есть конкурсы, в которые лучше не выигрывать.
и фестивали в которых лучше не участвовать
Это какая-то модификация Гарварда.
Ответил 100, потомучто я тупой
ввел -9000 потому что так можно было
Медаль то дадут или нет?
Написал "иди нахуй" потому, что иди нахуй.
> Любопытно, что нашлись те, кто прислал 67 и больше, включая 100. Интересно, они сделали это не стремясь выиграть или просто не понимали бесполезность такого хода?
Это, возможно, самые мудрые люди. Они поняли не только бесполезность лотереи, но и всей жизни.
Это, возможно, самые мудрые люди. Они поняли не только бесполезность лотереи, но и всей жизни.
Дай угадаю ты написал 67 и больше?
66
я был молод, и не понимал, какую ошибку я делаю
я был молод, и не понимал, какую ошибку я делаю
Не знаю почему, но до того как прочитал эти комменты - просто ввел 67...
бля. я забыл сколько я написал. даже не вдумывался в условие, просто ввёл какое-то число от 0 до 100 наобум.
Я 45 написал не знаю почему, просто написал 45...
44
Надо было 3 ставить.
> Любопытно, что нашлись те, кто прислал 67 и больше, включая 100. Интересно, они сделали это не стремясь выиграть или просто не понимали бесполезность такого хода? Еще интересно, руководствовались ли абсолютно рациональными рассуждениями те, кто прислали 0, или просто выбирали круглое число?
Чтобы те кто сказал 22 обосрались же. Валидная тактика, когда ты не можешь выиграть, свести дело к ничьей.
Чтобы те кто сказал 22 обосрались же. Валидная тактика, когда ты не можешь выиграть, свести дело к ничьей.
Не понял. Все обсуждают какой то ивент. А где он?
написал 76, просто не задумываясь, не пытаясь понять, проанализировать, или высчитать. Был уже в практически спящем состоянии, так что было глубоко влом разбираться и решать, просто положился на подсказку подсознания.
А я от балды ебанул число и все.
Чтобы написать коммент, необходимо залогиниться