Результаты поиска по запросу «

ТЕОРИЯ ДВУХ СТРУН

»

Запрос:
Создатель поста:
Теги (через запятую):



anon теория крючков суперструны физика наука 

За счёт чего предметы держат форму? Обратимся к самым маленьким частичкам которые человечество додумалось придумать - к теории суперструн. Если струны существуют - за счёт чего струна не разваливается? Как частички струны держат друг друга? Представ те что каждая точка струны на самом деле - крючок. Это объясняет факт сцепленности всего. Но абсолютно не объясняет тогда за счёт чего не разваливается сам крючок.
Да и к тому же если суперструны существуют - простейший моторчик должен был достаточно сильно запутать их - закрутить как канат.
По теории Эйнштейна пространство-время - достаточно материальная вещь и может сжиматься и разжиматься. Именно она удерживает всё во вселенной. Но что удерживает от рассыпания саму её?
anon,теория крючков,суперструны,физика,наука
Развернуть

наука Альберт Эйнштейн теория относительности великий человек песочница 

В ноябре 2015 года исполняется сто лет общей теории относительности, резко изменившей представления людей о пространстве и времени. Ее создатель, физик-теоретик Альберт Эйнштейн был не только гениальным ученым, но и чрезвычайно остроумным человеком.
Если теория относительности подтвердится, то немцы скажут, что я немец, а французы — что я гражданин мира; но если мою теорию опровергнут, французы объявят меня немцем, а немцы — евреем.,наука,Альберт Эйнштейн,теория относительности,великий человек,песочница
Развернуть

бог религия #Клуб аметистов антирелигия креационизм дарвинизм эволюция происхождение человека теории Теория Дарвина 

ЧТО СЛУЧИЛОСЬ.. с точки зрения с точки зрения с точки зрения биологии. палеонтологии. археологии. с точки зрения на самом деле, генетики. с точки зрения креационистов.,бог,религия,Клуб аметистов,клуб атеистов,разное,антирелигия,демотиваторы про религию, юмор, шутки и приколы про
Развернуть

реактор образовательный наука длиннопост 

Австралийские физики доказали иллюзорность бытия.


Квантовый эксперимент ученых из Национального университета Австралии подтверждает известную теорию о том, что реальность не существует до тех пор, пока ее не измерит сторонний наблюдатель. 
По крайней мере, это актуально для объектов очень мелкого масштаба. 
Результаты эксперимента были опубликованы в авторитетном издании Nature Physics. 

Исследователи пытались повторить известный эксперимент, который лежит в основе очень странного предсказания квантовой физики о природе реальности. Согласно этому предсказанию, нет никакой реальности до тех пор, пока мы ее не измерим, по крайней мере, в очень маленьком масштабе. 

У простого обывателя этот тезис вызывает ощущение “стойкого бреда”, да и с общей теорией относительности Эйнштейна многие устои квантовой теории пока согласовать не удалось. Впрочем, это не мешает физикам активно экспериментировать в этой области, а реально работающие квантовые компьютеры уже давно никого не удивляют. 

Реальность не существует 

Исследователи задались простым на первый взгляд вопросом. Если речь идет об объекте, который может вести себя либо как частица, либо как волна, то в какой момент времени объект “решает”, как именно себя вести? Согласно общей логике, объект должен быть либо частицей, либо волной по своему происхождению, а следовательно не имеет значение, кто проводит измерения либо наблюдения за объектом, поскольку его природа от этого не изменится. 

Но согласно квантовой теории, это не так. 

Квантовая теория предполагает, что результат зависит от того, как объект измеряли в конце его пути. И группа австралийских физиков в ходе своего эксперимента нашла доказательства того, что все происходит именно так. 

“Наше исследование доказывает, что измерение решает все. На квантовом уровне реальность не существует, если вы ее не видите”, - заключает руководитель исследования Эндрю Траскотт, физик из Австралийского национального университета в Канберре. 

Впервые подобный эксперимент был предложен американским физиком-теоретиком Джоном Уилером в 1978 году. Сейчас он известен в науке как эксперимент Уилера с отложенным выбором. 

Уилер предлагал использовать лучи света, отраженные зеркалами, но в те времена технологии не позволяли провести такой эксперимент в полной мере. Почти 40 лет спустя группа австралийских исследователей смогла реализовать идею эксперимента Уилера с использованием атомов гелия, взаимодействующих с лазерными лучами. 

Исследователи заключили атомы гелия в состояние “конденсата Бозе-Эйнштейна”, которое позволяет наблюдать квантовые эффекты на макроскопическом уровне, а затем удалили все атомы кроме одного. 
Этот единственный атом затем пропустили между двумя лазерными лучами, которые выступали в той же роли, в которой мелкая сетка выступает для лучей света. Т.е. в роли неравномерной решетки. 
Затем на пути атома была добавлена вторая такая “сетка”. 

Это привело к искажению пути атома, он отправился по обоим возможным путям так, как это сделала бы волна. Иными словами, атом проходил два разных пути. 

Но при повторном эксперименте, когда вторая “сетка” не была добавлена, атом выбирал лишь один возможный путь. 

По мнению исследователей, тот факт, что вторая “сетка” была добавлена уже после того, как атом пересекал первое “распутье”, предполагает, что атом, образно говоря, так и не определился со своей природой до того, как подвергся наблюдению (или измерению) во второй раз. 

“Предсказания квантовой физики относительно взаимодействия объектов могут казаться странными, когда речь идет о свете, который ведет себя как волна”, - поясняет Роман Хакимов, сотрудник Австралийского национального университета, принимавший участие в исследовании. 

Но по его словам, эксперименты с атомами, которые имеют массу и взаимодействуют с электрическими полями, делает картину еще более невероятной. 

Проще говоря, если принять тот факт, что атом выбирал определенный путь на первом распутье, эксперимент доказывает, что будущие измерения могут оказывать влияние на прошлое атома, поясняет руководитель исследования Энди Траскотт. 

“Атом не совершал путь между условными точками А и B, - поясняет он. - Только после измерений в конечной точке наблюдения, становилось понятно повел ли себя атом как волна, разделяясь по двум направлениям, или как частица, выбирая одно”. 

Что это значит? 

Несмотря на то, что все это звучит дико для непосвященного человека, авторы исследования говорят, что эксперимент является подтверждением квантовой теории. По крайней мере, в мельчайших масштабах. 

Эта теория уже позволила создать ряд вполне работоспособных технологий в области лазеров и компьютерных процессоров, но до сих пор таких ярких экспериментов, подтверждающих ее, не было. Траскотт и Хакимов в сущности нашли подтверждение тому, что реальность не существует, пока мы ее не наблюдаем. 

Это один из основополагающих тезисов квантовой теории. Именно его невероятность с точки зрения обывателя, для которого дождь не перестает идти, даже если ты закроешь глаза, чтобы его не видеть, делают квантовую теорию “оторванной от реальности”. 

До сих пор не было найдено никаких доказательств того, что этот принцип действует в реальности. Мысленный эксперимент Уилера, равно как и подтверждающий его практический эксперимент Траскотта, пока относятся лишь к квантовому уровню. 

В то же время, ряд философов считает, что даже будучи неприменимой к макро уровню, квантовая теория может быть полезной для обывателя, поскольку (будучи грубо сформулированной) гласит, что мир является в точности таким, каким мы его видим. 

			
	• jé • 1 H i* • • i ¡ese	. í ¡ J”	4^ГТТч rv>|
		LA	N \ V
S KW,			
l	■g
LiF' ■ ;'v	P
* I 1 • y \ 4 ’S	№.
- * • é		к
		
fu	L Щ	» . *,реактор образовательный,наука,длиннопост

Источник

Развернуть

Отличный комментарий!

Херня, результаты всё ещё можно объяснить тем, что во время измерения на атом производится воздействие, которое и изменяет его свойства. Невозможно произвести измерения в подобных масштабах без воздействия на измеряемый объект. По крайней мере, при текущем уровне развития технологий.
Bloody Body Bloody Body 13.03.201906:57 ссылка
+9.0
Ты текст читал? Измерение производится после взаимодействия атома с решеткой. Т.е. измерение влияет на то, как этом повел себя в прошлом.
int16 int16 13.03.201907:03 ссылка
+1.8
УЧЕНЫЕ ПУТЕШЕСТВУЮТ ВО ВРЕМЕНИ
Leoric Leoric 13.03.201907:10 ссылка
+37.7

озвучка озвучил сам научпоп физика моделирование хаос познавательно интересное видео песочница ...наука аттрактор Veritasium эффект бабочки 

Эффект бабочки


Дерек расскажет про эффект бабочки с точки зрения науки. От законов движения и всемирного тяготения Ньютона и демона Лапласа к уравнениям Лоренца. Как строят современные прогнозы погоды и какие у них есть особенности. Теория хаоса, хаотические системы, фазовое пространство состояний и аттрактор. Одним словом - красота. И даже будет всё понятно, хотя это неточно.
Развернуть

космос песочница 

Я уже рассказывал про неприятный парадокс звездных колонистов? Расскажу подробно и хронологично:
• 2040 год, совместным трудом капитолийское содружество государств смогло сделать космический двигатель, разгоняющий корабль до 1/30 скорости света, собрали добровольцев, дали им лучшее оборудование, медикаменты, данные, всю википедию, работающий ИИ, копию интернета, погрузили семерых астронавтов в криосон и отправили к Альфе Центавры в четырех световых годах от земли.

Через 120 лет в 2160 году этот корабль прилетит к Альфе Центавра и высадит туда разведчиков и колонистов и мы узнаем наконец что-то новое про другие миры. Возможно они даже создадут там колонию во славу человеческого рода и принципов!

• 2050 год, благодаря святым трудам финских техномагов обратный ток плазмы в искривленных полях позволил разогнать космический корабль до 1/20 скорости света!

Человеческий конгломерат в кратчайшие сроки совершает прорыв и запускает второй корабль с тридцатью святыми колонистами к Альфе Центавры.

4 световых года со скоростью 1/20 скорости света их корабль будет лететь всего лишь 80 лет!

И принесет свет техномагии Альфе центавра уже в 2130 году!

• 2060 год - комбинированный нейроресурс альянса земных белковых форм жизни успешно завершает тесты темпорально-фазированной решетки струнного градиента, позволяющий разогнать материальный объект до 1/10 скорости света без потери структурной целостности.

Доминион запускает флот из тридцати кораблей к Альфе Центавра, который доберется до цели всего за 40 лет, уже в 2100 году.

• 2070 год, метакристаллическая планетарная ноосущность выделив 2% вычислительного ресурса обнаруживает лазейку в законах гравифизики и коллапсо-полевой механики, позволяющую физическому объекту квантовать течение времени в произвольном направлении, что допускает разгон массивного тела до 1/2 скорости света не разрушая глюонные связи. Через 16 дней после этого открытия с земли к Альфе Центавра запускается флот из трехсот кораблей Алькубьерре с копиями ноосущности и допустимым набором мутаций, которые без происшествий прибывают на место назначения уже в 2078 году, где обнаруживают пять пустынных необитаемых планет.

Через сорок минут после прибытия флот запускает атомарный морфинг материи и перепечатку планетарных объектов по тераподобным паттернам.

• Через 22 года в 2100 году на перепечатанную с нуля райскую квази-планету прибывает первый флот из тридцати кораблей комбинированного нейроресурса, вылетевших с земли в 2060 году. Им рады, но без полного апгрейда прилетевший нейроресурс со всеми мутациями не сможет быть полезен даже самому себе.
• Через 30 лет в 2130 году в клубах священного ладана долетает корабль финских техномагов и не может поверить, что эта еретическая "цивилизация" мерцающих огней и искривляющихся перспектив имеет вообще хоть какое-то отношение к земле, с которой они улетели. Святым собором объявляется крестовый поход на ересь иных технологий. Поход оказывается успешен, все техномаги растворяются до кварков в плазменном поле системы подкачки планковских масс не создав ни малейших неполадок.
• Еще через 30 лет в 2160 году колонисты, вылетевшие трудами капитолийского содружества физически не способны понять принципы, законы физики, объемы и пространства того непостижимого места, куда они попали.

По их данным на момент вылета вокруг Альфы Центавра вращались пять планет, из них одна потенциально была пригодна для жизни. То, что они наблюдают на месте прибытия невозможно выразить вербально и оно не поддается наблюдению и структурированию.

Что теперь им делать с их титановыми бурами и супер-антисептиками, когда "белковое" тут никто уже 70 лет как не носит...

Вся команда астронавтов совершает суицид резонно посчитав, что это единственный способ выйти из галлюцинации криосна и продолжить путешествие к цели.

Вот такая вот беда с колонистами дальних миров, маляты.
космос,песочница
Развернуть

Всё самое интересное The Brights физика наука 

Поиски суперсимметрии на коллайдере принесли новую интригу

Две коллаборации, работающие на Большом адронном коллайдере, сообщают, что в одном из многочисленных поисков суперсимметрии обнаружилось небольшое превышение над предсказаниями Стандартной модели. Оба коллектива видят отклонение в схожих, но всё же не идентичных, процессах. 

Статистическая значимость превышения невелика, около 3 стандартных отклонений, но это превышение дает новую надежду на то, что физика за пределами Стандартной модели уже не за горами.

Физика элементарных частиц сегодня: краткий набросок

  Современная физика элементарных частиц находится последние годы в достаточно некомфортной ситуации. С одной стороны, в ее распоряжении есть теория — так называемая Стандартная модель, — которая замечательно согласуется с экспериментами. Она была построена в 60-70-е годы, привела к множеству предсказаний, которые великолепно подтвердились в последующие десятилетия. Последним в этой серии достижений стало открытие бозона Хиггса в 2012 году и последовавшее за ним присуждение Нобелевской премии по физике авторам хиггсовского механизма. Все эти годы Стандартная модель выдерживала тысячи экспериментальных проверок. Всевозможные тонкие и замысловатые эффекты, которые она предсказывала и которые удавалось сосчитать теоретически, неизменно подтверждались.

  С другой же стороны, физикам давно достоверно известно, что Стандартная модель не может быть окончательной теорией устройства микромира. Стандартная модель не способна объяснить наличие темной материи и доминирование вещества над антивеществом в нашей Вселенной. Она никак не объясняет разнообразные закономерности, которые обнаружены в свойствах кварков и особенно нейтрино. Наконец, многие численные величины в ней выглядят противоестественными, и сама Стандартная модель никакого объяснения им не дает. Физики уверены, что Стандартная модель — это лишь осколок какой-то другой, всеобъемлющей и более фундаментальной, теории устройства нашего мира, которую ученые условно называют физика за пределами Стандартной модели или «Новая физика». Что это за теория — пока неизвестно, но именно с ней связываются большие надежды на поиск ответов на неудобные для Стандартной модели вопросы.

  Чтобы не создавалось неправильного впечатления, надо обязательно оговориться, что проблема — не в том, чтобы придумать хоть какую-то теорию. Таких теорий придуманы, наверное, сотни. Проблема в том, чтобы теория давала новые, нестандартные предсказания и чтобы эти предсказания подтверждались на опыте. А вот с этим пока сложности: ни один прямой эксперимент с элементарными частицами не обнаружил никакого достоверного отклонения от Стандартной модели. Так что Большой адронный коллайдер (он же LHC) — это не просто установка, которая сталкивает частицы и что-то там измеряет. Это тот инструмент, который должен помочь нам дотянуться до Новой физики, до нового пласта реальности, лежащего под Стандартной моделью. Первый маленький шаг в этом направлении сделан: открыт хиггсовский бозон и началось его изучение. Но это был подготовительный шаг, а настоящая задача коллайдера — достоверное обнаружение хоть какого-то отклонения от Стандартной модели — пока не решена.

Как ищут проявления суперсимметрии

  Поскольку теорий Новой физики много и предсказывают они разные явления, исследователи выполняют сотни различных анализов накопленных на LHC данных и ищут в них эти эффекты. Среди всех моделей особняком стоят теории, опирающиеся на суперсимметрию. Это слово обозначает глубокую, математически самосогласованную идею о том, что наш мир обладает симметрией нового типа, которая связывает между собой, говоря совсем условно, частицы материи и действующие между ними силы.

  Идея суперсимметрии проверяема в эксперименте, по крайней мере в принципе. Суперсимметричные теории предсказывают множество новых частиц, суперпартнеров обычных частиц. У кварков, глюонов, лептонов, гравитонов и всех других частиц есть суперпартнеры: скварки, глюино, слептоны, гравитино и т.д. — 

Top quark
Standard - model particles
Hypothetical SUSY particles
Stop
squark,Всё самое интересное,интересное, познавательное,,разное,The Brights,физика,наука

Проблема только в том, что эти новые частицы — тяжелые, и никто не может заранее сказать, насколько. Когда строился Большой адронный коллайдер, среди физиков царило воодушевление. Многие из них считали, что массы суперчастиц находятся в районе 1 ТэВ или даже меньше, и такие частицы начнут массово рождаться на LHC. Увы, первый сеанс работы коллайдера охладил этот пыл: многочисленные поиски прямых или косвенных проявлений суперсимметрии по-прежнему дают отрицательные результаты.

Сейчас, после двух недавних любопытных публикацией CMS и ATLAS, ситуация, возможно, начнет меняться. Но прежде чем рассказывать о них самих, стоит кратко обрисовать, как вообще ищут проявления суперсимметрии на коллайдере.

Сложность тут в том, что у суперсимметрии нет какого-то одного конкретного, железобетонного предсказания, проверяемого прямо сейчас. Имеется большое количество вариантов суперсимметричных теорий, а в них есть неизвестные численные параметры. В результате предсказания для коллайдера могут получиться самые разнообразные — и физики стараются, по возможности, охватить их все. Среди них выделяется главное направление поисков —

столкновение
протонов
Ж
глюино
/ > ¿о
скварк
Л/
\>
нейтралино
кварки -> адроны,Всё самое интересное,интересное, познавательное,,разное,The Brights,физика,наука
рис.3

Считается, что вначале в столкновении протонов рождаются сильновзаимодействующие суперчастицы — скварки или глюино. Они тяжелые и распадаются на другие, те — распадаются дальше, и т.д. Так идет до тех пор, пока не появится легчайшая суперсимметричная частица (в зависимости от варианта теории, это может быть нейтралино, гравитино или другие суперчастицы). Главное, что она уже ни на что не распадается, а просто улетает прочь, не будучи даже пойманной детектором. Эта частица уносит большой поперечный импульс, который — в силу неуловимости частицы — не отслеживается детектором. Детектор регистрирует все обычные частицы, измеряет их импульсы и видит, что они не складываются в нуль, то есть заметная часть импульса «теряется». Такой дисбаланс в поперечном импульсе указывает на то, что в столкновении родилась какая-то неуловимая частица высокой энергии.

  Конечно, одного лишь дисбаланса поперечного импульса мало для открытия Новой физики. В Стандартной модели тоже есть частицы, не регистрируемые детектором, — нейтрино, — и они запросто могут породить похожую картину столкновений. Вдобавок, детекторы неидеальны, и иногда они ошибаются при измерении энергий и импульсов (особенно когда приходится мерять адронные струи, целые потоки адронов) или даже могут неправильно идентифицировать пролетевшую частицу. Поэтому в реальности физикам приходится тщательно сравнивать полученные данные с предсказаниями Стандартной модели и пытаться найти не просто какую-то статистику событий, а их превышение над фоном Стандартной модели. Так что каждый поиск, каждый анализ — это кропотливая работа десятков и сотен исследователей в течение месяцев или даже лет.

Новые результаты CMS и ATLAS

  После обстоятельного вступления перейдем наконец к новым результатам с коллайдера. Сейчас, в преддверии нового запуска LHC, экспериментальные группы «подчищают хвосты» — доделывают трудоемкие анализы на основе данных, набранных во время первых трех лет работы коллайдера. Регулярно появляются и статьи о тех или иных поисках суперсимметрии, но все они пока приводят к отрицательным результатам. Однако за последний месяц обе крупнейшие коллаборации, работающие на LHC, сообщили о наблюдении любопытных отклонений в похожих — но не идентичных! — конфигурациях частиц. Статья коллаборации CMS появилась в конце февраля, а работа ATLAS — в середине марта, буквально на днях [1, 2].

  В обеих работах физики изучали события следующего типа: наблюдаются как минимум две адронные струи, лептонная пара (электрон-позитрон или мюон-антимюон) и потерянный поперечный импульс. На рис. 3 показаны два примера процессов с рождением и распадом суперсимметричных частиц, которые могли бы порождать такие события. Конечно, существуют и обычные (фоновые) процессы, которые дают такой же сигнал. Например, в столкновении протонов может просто родиться Z-бозон, который распадется на лептонную пару, а уж адроны всегда рождаются в избытке. Если детектор неправильно сосчитает энергию адронных струй, вполне может появиться дисбаланс поперечного импульса. Однако в этом случае дисбаланс будет небольшим, порядка десятков ГэВ. Чтобы избавиться от него, физики отобрали только такие события, в которых дисбаланс составлял как минимум сотню ГэВ (в случае ATLAS — 225 ГэВ). Есть и другие источники фона, но все их физики аккуратно учли.

  Два типа сигналов, показанные на рисунке — 

частицы Стандартной модели
кварки —> адронные струи
ч ч
лептоны
стабильные
легчайшие
нейтралино
глюино неитралино слептоны
Р
Р
частицы-суперпартнеры
частицы Стандартной модели
кварки —> адронные струи
У	Ч	г-бозон —> лептоны
г 6
гравитино
С
z
ч	ч
глюино неитралино

Отличаются поведением лептонной пары. На верхней картинке показано нерезонансное рождение лептонов, в котором они излучаются независимо друг от друга. В этом случае энергии двух лептонов не связаны друг с другом, а значит, инвариантная масса этой пары (mll) может быть самой разной, и большой, и маленькой. На нее имеется лишь ограничение сверху, поскольку эти лептоны получаются из распадов тяжелых частиц. С точки зрения эксперимента, характерный сигнал таких событий выглядит так: имеется широкое распределение по mll, которое вдруг обрывается выше некоторого значения. Именно этот «обрыв распределения» и искали физики.

  На нижней картинке на рисунке — 

частицы Стандартной модели
кварки —> адронные струи
ч ч
лептоны
стабильные
легчайшие
нейтралино
глюино неитралино слептоны
Р
Р
частицы-суперпартнеры
частицы Стандартной модели
кварки —> адронные струи
У	Ч	г-бозон —> лептоны
г 6
гравитино
С
z
ч	ч
глюино неитралино

 — показан другой вариант — резонансное рождение лептонной пары. Здесь лептоны рождаются не сами по себе, а получаются в результате распада Z-бозона. Поэтому их энергии скоррелированы, а инвариантная масса пары близка к массе Z-бозона (91 ГэВ). Поэтому в поисках такого типа событий можно сфокусироваться на области от 81 до 101 ГэВ, а участок распределения вне ее, наоборот, использовать для оценки фона.

  Два коллектива — CMS и ATLAS — выполнили оба типа поисков, правда со слегка отличающимися критериями отбора. Но вот результаты у них получились разными. CMS сообщает, что в случае нерезонансного рождения на рисунке вверху — 

частицы Стандартной модели
кварки —> адронные струи
ч ч
лептоны
стабильные
легчайшие
нейтралино
глюино неитралино слептоны
Р
Р
частицы-суперпартнеры
частицы Стандартной модели
кварки —> адронные струи
У	Ч	г-бозон —> лептоны
г 6
гравитино
С
z
ч	ч
глюино неитралино

 — в области mll от 20 до 70 ГэВ наблюдается некоторое превышение числа событий над фоном, с обрывом распределения при значении около 71 ГэВ. Статистическая значимость отклонения оценена в 2,4σ. Эффект, конечно, не слишком впечатляющий, но тем не менее заслуживает интереса, тем более что это был один из первых поисков суперсимметрии методом обрыва распределения. В случае резонансного рождения коллаборация CMS не видит никаких отклонений.

Результаты ATLAS получились прямо противоположными. Нерезонансный поиск ничего существенного не выявил, зато в резонансном рождении было найдено любопытное отклонение. На рисунке — 

Events / 2.5 GeV
14
12
10
8
6
n I I I I | I I I | I I I | I I I | I I I | I I I | I I I | I I I | I I I | r
—Data
Standard Modal /£ = 8 TeV. 20.3 fb'1 I	I Flavour Symmetric
I	I Other Backgrounds
 m(g)ji=(700.200)GeV_!
 m(g)n=(900.600)GeV
ATLAS
- SR-Z ee
>
<D
CD
in
c\j
c
o
>

 — показано распределение по инвариантной массе электронной или мюонной пары. Бросается в глаза то, насколько малый тут фон и насколько сильным оказался сигнал. В случае CMS всё выглядело иначе: был большой фон, и на нем физики разглядели небольшое превышение. Тут же в электрон-позитронном канале ожидалось примерно 4±2 события, а обнаружено — аж 16! В мюонном случае превышение заметно слабее, но тоже кое-что наблюдается. Невооруженному взгляду может показаться, что левый график на рисунке — 

Events / 2.5 GeV
14
12
10
8
6
n I I I I | I I I | I I I | I I I | I I I | I I I | I I I | I I I | I I I | r
—Data
Standard Modal /£ = 8 TeV. 20.3 fb'1 I	I Flavour Symmetric
I	I Other Backgrounds
 m(g)ji=(700.200)GeV_!
 m(g)n=(900.600)GeV
ATLAS
- SR-Z ee
>
<D
CD
in
c\j
c
o
>

 — прямо-таки кричит: открытие! Однако аккуратный анализ более сдержан: статистическая значимость отклонения в электронном канале (а также в объединенном лептонном) составляет 3σ.

Конечно, сейчас пока рано утверждать, что в коллайдере действительно было открыто явление, достоверно выходящее за рамки Стандартной модели. Отклонения порядка 3σ считаются указанием на существование, но никак не открытием. Такое отклонение вполне может оказаться статистической флуктуацией или неучтенной погрешностью детектора. В физике частиц встречались примеры, когда по прошествии некоторого времени рассасывались сигналы и с большей статистической значимостью. Настораживает также и то, что два детектора получили несогласующиеся результаты. Конечно, методики у них немножко разные, и никто не обещает, что отклонения в одном эксперименте обязательно подтвердятся в другом. Тем не менее после этого первого «захода» оба детектора наверняка будут уделять повышенное внимание этому процессу. Ну и, разумеется, у физиков появляется дополнительный повод с нетерпением ожидать результаты нового сеанса работы коллайдера LHC Run II, который за три года должен увеличить статистику почти на порядок.

Игорь Иванов

1. Search for physics beyond the standard model in events with two leptons, jets, and missing transverse momentum in pp collisions at sqrt(s) = 8 TeV. ArXiv:1502.06031 — http://arxiv.org/abs/1502.06031
2. Search for supersymmetry in events containing a same-flavour opposite-sign dilepton pair, jets, and large missing transverse momentum in s√=8 TeV pp collisions with the ATLAS detector. ArXiv:1503.03290 — http://arxiv.org/abs/1503.03290

Источник — http://elementy.ru/news/432428

Развернуть

Нобелевская премия физика наука ученые 

Нобелевскую премию по физике получили трое ученых за исследования запутанных состояний

Нобелевская премия,физика,наука,ученые
На сайте Нобелевского комитета сообщается, что Ален Аспе (Франция), Джон Клаузер (США) и Антон Цайлингер (Австрия) получили награду "за эксперименты с запутанными фотонами, подтвердившие нарушение неравенства Белла, и новаторство в квантовой информатике".

Речь идет об исследовании частиц в так называемом запутанном состоянии: то, что происходит с одной из частиц в паре, определяет, что происходит с другой частицей, даже если они разделены и находятся далеко друг от друга.

"Долгое время вопрос заключался в том, была ли корреляция вызвана тем, что частицы в запутанной паре содержали скрытые переменные, инструкции, которые говорят им, какой результат они должны дать в эксперименте. В 1960-х годах Джон Стюарт Белл разработал математическое неравенство, утверждающее, что при наличии скрытых переменных корреляция между результатами большого количества измерений никогда не превысит определенного значения", – сказано в релизе.

Однако в соответствии с постулатами квантовой механики определенный тип эксперимента должен был нарушить неравенство Белла, зафиксировав "более сильные корреляции, чем это было бы возможно в противном случае".

Джон Клаузер на основании идеи Белла провел практический эксперимент, который подтверждал квантовую теорию и явно нарушал неравенство Белла. "Это означает, что квантовая механика не может быть заменена теорией, которая использует скрытые переменные", – заявили в комитете.

Аспе удалось устранить важный недостаток в эксперименте Клаузера, подтвердив его выводы. Цайлингер, в свою очередь, усовершенствовав инструменты, смог "зафиксировать явление, называемое квантовой телепортацией и позволяющее перемещать квантовое состояние от одной частицы к другой на расстоянии".

¿SVUNGL ^ ) VETENSKAPS V&/ AKADEMIEN SKUNGL VETENSKAPS AKADEMIEN tvAMSSON KUNGL RgSa VETENSKAPS AKADEMIEN t«« «OIM. MW KAOUA V K4MC» NOBELPRISETI FYSIK 2022 THE NOBEL PRIZE IN PHYSICS 2022 Alain Aspect Université Paris-Saday & École Polytechnique, France John F. Clauser J.F. Clauser

Развернуть

Отличный комментарий!

что это все значит?
AndreyZhuk AndreyZhuk04.10.202215:41ссылка
+42.1

иммунитет болезнь ученые против мифов Образование научпоп видео 

Можно ли поднять иммунитет?

В связи с хреновой эпидемиологической обстановкой, всё чаще приходится слышать о "укреплении иммунитета".
Что такое иммунитет и можно ли его укрепить?
Давайте спросим у учёных
Крайне актуальный выпуск "Ученые против мифов"

Развернуть

гифки вода Подкрученные выдохи дельфинов 

Развернуть

Отличный комментарий!

Cassiopeia Cassiopeia 05.04.201913:51 ссылка
+38.5
В этом разделе мы собираем самые смешные приколы (комиксы и картинки) по теме ТЕОРИЯ ДВУХ СТРУН (+1000 картинок)